Show simple item record Orosram, Wachirarak Comemuang, Chalermwut 2020-12-09T09:31:24Z 2020-12-09T09:31:24Z 2020-10-29
dc.identifier.citation WSEAS TRANSACTIONS on MATHEMATICS en_US
dc.identifier.issn 1109-2769
dc.description.abstract Let n be an positive integer with n=10(mod15). In this paper, we prove that (1,0,3) is unique non-negative integer solution (x,y,z) of the Diophantine equation 8^x+n^y=z^2, where x,y and z are non-negative integers. en_US
dc.language.iso en en_US
dc.publisher มหาวิทยาลัยราชภัฏบุรีรัมย์ en_US
dc.subject exponential Diophantine equation en_US
dc.subject Mersnne primes en_US
dc.subject solution en_US
dc.subject Factor en_US
dc.subject positive integral en_US
dc.subject non-negative integer en_US
dc.title On the Diophantine Equation 8^x+n^y=z^2 en_US
dc.title.alternative On the Diophantine Equation 8^x+n^y=z^2 en_US
dc.type Article en_US
dc.contributor.emailauthor en_US

Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace

Advanced Search


My Account