บทที่ 1

ระบบเลขฐาน

ตัวเลขที่คนเราใช้ในชีวิตประจำวันคือเลขฐาน 10 ประกอบด้วยตัวเลขจำนวน 10 ตัว คือ เลข 0 ถึงเลข 9 เหตุผลที่คนเราใช้เลขฐาน 10 อาจเป็นเพราะมนุษย์เรามีนิ้วมืออยู่ 10 นิ้ว จึงนำมาใช้เป็น เครื่องมือช่วยในนับเลขหรือการคำนวณ แต่สำหรับการประมวลผลในคอมพิวเตอร์จะใช้ระบบ เลขฐานสอง ที่ประกอบด้วยตัวเลข 2 ตัว คือ เลข 0 และเลข 1 เพราะภายในเครื่องคอมพิวเตอร์ ประกอบด้วยวงจรอิเลคทรอนิกส์ที่มีหลักการทำงานแบบดิจิตอล และใช้ระดับแรงดันไฟฟ้า 2 ระดับ คือ สวิตซ์เปิด (on) กับสวิตซ์ปิด (off) โดยกำหนดให้สถานะของการ "เปิด" แทนด้วยเลข "0" และ "ปิด" แทนด้วยเลข "1" ซึ่งเลขฐานสองจำนวนหนึ่งหลัก เราเรียกว่า "บิต" นอกจากนี้คอมพิวเตอร์ ยังมีการใช้งานตัวเลขฐานอื่น ๆ อีก คือ เลขฐานแปด ที่ประกอบด้วยตัวเลข 8 ตัว คือ 0 ถึง 7 และ เลขฐานสิบหก ที่ประกอบด้วยตัวเลข 0 ถึง 9 และตัวอักษรอีก 6 ตัวคือ A, B, C, D, E และ F ซึ่งมีค่า เท่ากับเลข 10 ถึง 15

ความหมายระบบเลขฐาน

เลขฐาน หมายถึง กลุ่มข้อมูลที่มีจำนวนหลัก (Digit) ตามชื่อของเลขฐานนั้น ๆ เช่น เลขฐานสอง เลขฐานแปด เลขฐานสิบและเลขฐานสิบหก ซึ่งมีรายละเอียดดังต่อไปนี้ (ธวัชชัย เลื่อน ฉวี และอนุรักษ์ เถื่อนศิริ. 2537 : 37)

ระบบเลขฐานสอง (Binary number system) ประกอบด้วยตัวเลข 2 ตัว คือ 0 และ 1 ระบบเลขฐานแปด (Octal number system) ประกอบด้วยตัวเลข 8 ตัว คือ 0, 1, 2, 3, 4, 5, 6, 7

ระบบเลขฐานสิบ (Decimal number system) ประกอบด้วยตัวเลข 10 ตัว คือ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

ระบบเลขฐานสิบหก (Hexadecimal number system) ประกอบด้วยตัวเลข 10 ตัว คือ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 และตัวอักษร 6 ตัว คือ A, B, C, D, E, F (เมื่อ A = 10, B = 11, C=12, D = 13, E=14, F=15 ในฐานสิบ)

ตาราง 1.1 จำนวนหลักของระบบจำนวนฐานต่าง ๆ

	จำนวนหลัก															
ฐานสอง	0	1														
ฐานแปด	0	1	2	3	4	5	6	7	8							
ฐานสิบ	0	1	2	3	4	5	6	7	8	9						
ฐานสิบหก	0	1	2	3	4	5	6	7	8	9	Α	В	C	D	Е	F

ที่มา : สมควร สากำ (2559 : 34)

ตาราง 1.2 เปรียบเทียบจำนวนในระบบเลขฐานสิบ ฐานสอง ฐานแปด และฐานสิบหก

ฐานสิบ	ฐานสอง	ฐานแปด	ฐานสิบหก
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	А
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	Е
15	1111	17	F

ที่มา : พนมไพร ช่วงจั่น (2546 : 12)

การเขียนระบบเลขฐาน ต้องระบุชื่อฐานกำกับไว้ที่ท้ายสุดของกลุ่มเลขนั้น ๆ เสมอ ยกเว้น ระบบเลขฐานสิบซึ่งใช้งานกันอย่างแพร่หลาย ส่วนในระบบเลขฐานอื่น ๆ จำเป็นต้องเขียนกำกับไว้ เสมอ เพื่อป้องกันความสับสน การอ่านระบบเลขฐาน สามารอ่านเรียงตามตัวเลข ยกเว้นเลขฐานสิบ ที่อ่านค่าของตัวเลขในแต่ละหลัก

ตัวอย่าง

1001 ₂	หมายถึง	เลขฐานสอง	อ่านว่า	หนึ่ง-ศูนย์-ศูนย์-หนึ่ง
5163 ₈	หมายถึง	เลขฐานแปด	อ่านว่า	ห้า-หนึ่ง-หก-สาม
$4F5B_{16}$	หมายถึง	เลขฐานสิบหก	อ่านว่า	สี่-เอฟ-ห้า-บี

การแปลงเลขฐานใด ๆ เป็นเลขฐานสิบ

ในการแปลงเลขฐานใด ๆ เป็นเลขฐานสิบที่จะกล่าวถึงนี้ แบ่งออกเป็น 3 เลขฐาน คือ เลขฐานสอง เลขฐานแปด และเลขฐานสิบหก แปลงเป็นเลขฐานสิบ ดังต่อไปนี้

1. การแปลงเลขฐานสองเป็นเลขฐานสิบ

การแปลงเลขฐานสองเป็นเลขฐานสิบสามารถทำได้โดยวิธีการคูณค่าประจำหลักคือ 2" กับค่าสัมประสิทธิ์ แล้วนำผลลัพธ์ที่ได้จากการคูณในแต่ละหลักมารวมกัน จะได้เป็นค่าของ เลขฐานสิบ

ตัวอย่าง 1.1 จงเปลี่ยน 10111_2 ให้เป็นเลขในระบบฐานสิบ ว**ิธีทำ**

$$10111_2 = 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$$

$$= 1 \times 16 + 0 \times 8 + 1 \times 4 + 1 \times 2 + 1 \times 1$$

$$= 16 + 0 + 4 + 2 + 1$$

$$= 23$$
ดังนั้น $10111_2 = 23$

ตัวอย่าง 1.2 จงเปลี่ยน 110010_2 ให้เป็นเลขในระบบฐานสิบ วิธีทำ

$$110010_2 = 1 \times 2^5 + 1 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0$$

$$= 1 \times 32 + 1 \times 16 + 0 \times 8 + 0 \times 4 + 1 \times 2 + 0 \times 1$$

$$= 32 + 16 + 0 + 0 + 2 + 0$$

$$= 50$$
ดังนั้น $110010_2 = 50$

ตัวอย่าง 1.3 จงเปลี่ยน 1101001₂ ให้เป็นเลขในระบบฐานสิบ วิธีทำ

$$1101001_2 = 1 \times 2^6 + 1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$$

$$= 1 \times 64 + 1 \times 32 + 0 \times 16 + 1 \times 8 + 0 \times 4 + 0 \times 2 + 1 \times 1$$

$$= 64 + 32 + 0 + 8 + 0 + 0 + 1$$

$$= 105$$
ดังนั้น $1101001_2 = 105$

ตัวอย่าง 1.4 จงเปลี่ยน 1011.10_2 ให้เป็นเลขในระบบฐานสิบ วิธีทำ

$$1011.10_2 = 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 0 \times 2^{-2}$$

$$= 1 \times 8 + 0 \times 4 + 1 \times 2 + 1 \times 1 + 1 \times 0.5 + 0 \times 0.25$$

$$= 8 + 0 + 2 + 1 + 0.5 + 0$$

$$= 11.5$$
ดังนั้น $1011.10_2 = 11.5$

ตัวอย่าง 1.5 จงเปลี่ยน 10010.11_2 ให้เป็นเลขในระบบฐานสิบ วิธีทำ

$$10010.11_2 = 1 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 + 1 \times 2^{-1} + 1 \times 2^{-2}$$
 $= 1 \times 16 + 0 \times 8 + 0 \times 4 + 1 \times 2 + 0 \times 1 + 1 \times 0.5 + 1 \times 0.25$
 $= 16 + 0 + 0 + 2 + 0 + 0.5 + 0.25$
 $= 18.75$
ดังนั้น $10010.11_2 = 18.75$

2. การแปลงเลขฐานแปดเป็นเลขฐานสิบ

การแปลงเลขฐานแปดเป็นเลขฐานสิบสามารถทำได้โดยวิธีการคูณค่าประจำหลักคือ 8" กับค่าสัมประสิทธิ์แล้วนำผลลัพธ์ที่ได้จากการคูณในแต่ละหลักมารวมกัน จะได้เป็นค่าของ เลขฐานสิบ

ตัวอย่าง 1.6 จงเปลี่ยน 560₈ ให้เป็นเลขในระบบฐานสิบ ว**ิธีทำ**

$$560_8 = 5 \times 8^2 + 6 \times 8^1 + 0 \times 8^0$$

$$= 5 \times 64 + 6 \times 8 + 0 \times 1$$

$$= 320 + 48 + 0$$

$$= 368$$

ดังนั้น
$$560_8 = 368$$

ตัวอย่าง 1.7 จงเปลี่ยน 3762_8 ให้เป็นเลขในระบบฐานสิบ วิธีทำ

$$3762_8 = 3 \times 8^3 + 7 \times 8^2 + 6 \times 8^1 + 2 \times 8^0$$

$$= 3 \times 512 + 7 \times 64 + 6 \times 8 + 2 \times 1$$

$$= 1536 + 448 + 48 + 2$$

$$= 2034$$
ดังนั้น $3762_8 = 2034$

ตัวอย่าง 1.8 จงเปลี่ยน 604.2_{s} ให้เป็นเลขในระบบฐานสิบ วิธีทำ

$$604.2_8 = 6 \times 8^2 + 0 \times 8^1 + 4 \times 8^0 + 2 \times 8^{-1}$$

$$= 6 \times 64 + 0 \times 8 + 4 \times 1 + 2 \times 0.125$$

$$= 384 + 0 + 4 + 0.25$$

$$= 388.25$$
ดังนั้น $604.2_8 = 388.25$

ตัวอย่าง 1.9 จงเปลี่ยน $1254.08_{\rm s}$ ให้เป็นเลขในระบบฐานสิบ วิธีทำ

$$1254.08_8 = 1 \times 8^3 + 2 \times 8^2 + 5 \times 8^1 + 4 \times 8^0 + 0 \times 8^{-1} + 8 \times 8^{-2}$$

$$= 1 \times 512 + 2 \times 64 + 5 \times 8 + 4 \times 1 + 0 \times 0.125 + 8 \times 0.015625$$

$$= 512 + 128 + 40 + 4 + 0 + 0.125$$

$$= 684.125$$
ดังนั้น $1254.08_8 = 684.125$

ตัวอย่าง 1.10 จงเปลี่ยน 2314.50_8 ให้เป็นเลขในระบบฐานสิบ วิธีทำ

$$2314.50_8 = 2 \times 8^3 + 3 \times 8^2 + 1 \times 8^1 + 4 \times 8^0 + 5 \times 8^{-1} + 0 \times 8^{-2}$$

$$= 2 \times 512 + 3 \times 64 + 1 \times 8 + 4 \times 1 + 5 \times 0.125 + 0 \times 0.015625$$

$$= 1024 + 192 + 8 + 4 + 0.625 + 0$$

$$= 1228.625$$
ดังนั้น $2314.50_8 = 1228.625$

3. การแปลงเลขฐานสิบหกเป็นเลขฐานสิบ

การแปลงเลขฐานสิบหกเป็นเลขฐานสิบสามารถทำได้โดยวิธีการคูณค่าประจำหลักคือ 16" กับค่าสัมประสิทธิ์แล้วนำผลลัพธ์ที่ได้จากการคูณในแต่ละหลักมารวมกัน จะได้เป็นค่าของ เลขฐานสิบ

ตัวอย่าง 1.11 จงเปลี่ยน 4*B*7₁₆ ให้เป็นเลขในระบบฐานสิบ

$$4B7_{16} = 4 \times 16^2 + B \times 16^1 + 7 \times 16^0$$

$$= 4 \times 256 + 11 \times 16 + 7 \times 1$$

$$= 1024 + 176 + 7$$

$$= 1207$$
ดังนั้น $4B7_{16} = 1207$

ตัวอย่าง 1.12 จงเปลี่ยน $B8D9_{16}$ ให้เป็นเลขในระบบฐานสิบ วิธีทำ

$$B8D9_{16} = B \times 16^3 + 8 \times 16^2 + D \times 16^1 + 9 \times 16^0$$
 $= 11 \times 4,096 + 8 \times 256 + 13 \times 16 + 9 \times 1$
 $= 45,056 + 2,048 + 208 + 9$
 $= 47321$

ตัวอย่าง 1.13 จงเปลี่ยน $3C.07_{16}$ ให้เป็นเลขในระบบฐานสิบ วิ**ธีทำ**

$$3C.07_{16} = 3 \times 16^2 + C \times 16^1 + 0 \times 16^{-1} + 7 \times 16^{-2}$$
 $= 3 \times 256 + 12 \times 16 + 0 \times 0.0625 + 7 \times 0.00390625$
 $= 768 + 192 + 9 + 0.02734375$
 $= 969.02734375$
ดังนั้น $3C.07_{16} = 969.02734375$

ตัวอย่าง 1.14 จงเปลี่ยน $36F.2A_{16}$ ให้เป็นเลขในระบบฐานสิบ วิธีทำ

$$36F.2A_{16} = 3\times16^{2} + 6\times16^{1} + F\times16^{0} + 2\times16^{-1} + A\times16^{-2}$$

$$= 3\times256 + 6\times16 + 15\times1 + 2\times0.0625 + 10\times0.00390625$$

$$= 768+96+15+0.125+0.0390625$$

$$= 879.1640625$$

ดังนั้น
$$36F.2A_{16} = 879.1640625$$

ตัวอย่าง 1.15 จงเปลี่ยน $C69.\mathrm{E2}_{16}$ ให้เป็นเลขในระบบฐานสิบ วิธีทำ

$$C69.E2_{16} = C \times 16^2 + 6 \times 16^1 + 9 \times 16^0 + E \times 16^{-1} + 2 \times 16^{-2}$$

$$= 12 \times 256 + 6 \times 16 + 9 \times 1 + 14 \times 0.0625 + 2 \times 0.00390625$$

$$= 3072 + 96 + 9 + 0.875 + 0.0078125$$

$$= 3177.8828125$$
ดังนั้น $C69.E2_{16} = 3177.8828125$

การแปลงเลขฐานสิบ เป็นเลขฐานใด ๆ

ธีรวัฒน์ ประกอบผล (2540 : 45) ได้กล่าวถึงการเปลี่ยนเลขฐานสิบไปเป็นเลขฐานใด ๆ ซึ่งมีขั้นตอนดังนี้

- 1. แบ่งเลขฐานสิบจำนวนเต็มแยกออกจากเลขฐานสิบที่เป็นทศนิยม
- 2. ส่วนของเลขฐานสิบที่เป็นจำนวนเต็ม หลักการคือ นำเลขฐาน 10 ตัวนั้นมาตั้งหาร ด้วยเลขฐานที่ต้องการไปเรื่อย ๆ จนกว่าผลลัพธ์จะเป็น 0 ในการหารแต่ละครั้งให้เก็บเศษไว้ เมื่อการ หารสิ้นสุดแล้ว ให้นำเศษมาเรียงกันจากล่างขึ้นบนก็จะได้เลขฐานที่แปลงไป โดยเศษตัวสุดท้ายคือ MSB: Most Significant Bit เป็นบิตที่อยู่ทางด้านซ้ายสุด และมีค่ามากที่สุด และ LSB: Least Significant Bit เป็นบิตที่อยู่ทางด้านขวาสุด และมีค่าน้อยที่สุด
- 3. ส่วนของเลขฐานสิบที่เป็นทศนิยม จะถูกคูณด้วยเลขฐานที่ต้องการหลาย ๆ ครั้งเท่า จำนวนทศนิยมที่ต้องการหรือจนกว่าจะคูณต่อไปไม่ได้ ผลลัพธ์คือ เลขจำนวนเต็มหน้าทศนิยมของ การคูณแต่ละครั้ง เลขจำนวนเต็มของการคูณครั้งแรกมีค่าเป็น MSD เลขจำนวนเต็มของการคูณครั้ง สุดท้ายมีค่าเป็น LSD

ในการแปลงเลขฐานสิบ เป็นเลขฐานต่าง ๆ ที่จะกล่าวถึงนี้ แบ่งออกเป็น 3 เลขฐาน คือ เลขฐานสิบแปลงเป็นเลขฐานสอง เลขฐานแปด และเลขฐานสิบหก ดังต่อไปนี้

1. การแปลงเลขฐานสิบเป็นเลขฐานสอง

การแปลงเลขฐานสิบเป็นเลขฐานสองทำได้โดยเอาเลขฐานสิบตั้งแล้วหารด้วยเลข 2 ไป เรื่อย ๆ จนกระทั่งผลลัพธ์เป็น 0 ในการหารนั้นจะต้องเขียนเศษไว้ทุกครั้ง จากนั้นให้เขียนเศษที่ได้จาก การหารโดยเรียงลำดับจากด้านล่างขึ้นด้านบน

ตัวอย่าง 1.16 จงเปลี่ยน 39₁₀ ให้เป็นเลขในระบบฐานสอง วิธีทำ

ตัวอย่าง 1.17 จงเปลี่ยน 223₁₀ ให้เป็นเลขระบบฐานสอง ว**ิธีทำ**

ตัวอย่าง 1.18 จงเปลี่ยน 0.251_{10} ให้เป็นเลขในระบบฐานสอง (ตอบทศนิยม 4 ตำแหน่ง) วิธีทำ

$$0.251 \times 2 = 0.502$$
 \Rightarrow 0 \Leftarrow MSD $0.502 \times 2 = 1.004$ \Rightarrow 1 $0.004 \times 2 = 0.008$ \Rightarrow 0 \Leftarrow LSD คังนั้น $0.251_{10} = 0.0100_2$

ตัวอย่าง 1.19 จงเปลี่ยน 0.573₁₀ ให้เป็นเลขในระบบฐานสอง (ตอบทศนิยม 4 ตำแหน่ง)

$$0.573 \times 2 = 1.146$$
 \Rightarrow 1 \Leftarrow MSD $0.146 \times 2 = 0.292$ \Rightarrow 0 $0.292 \times 2 = 0.584$ \Rightarrow 0 $0.584 \times 2 = 1.168$ \Rightarrow 1 \Leftarrow LSD ดังนั้น $0.573_{10} = 0.1001_2$

ตัวอย่าง 1.20 จงเปลี่ยน 49.37_{10} ให้เป็นเลขในระบบฐานสอง (ตอบทศนิยม 4 ตำแหน่ง) **วิธีทำ** พิจารณา 2 ส่วน คือ จำนวนเต็มคือ 49_{10} และทศนิยมคือ 0.37_{10} แล้วแปลงให้เป็นเลขใน ระบบฐานสอง

1. หาจำนวนเต็มคือ 49_{10}

$$2|\underline{49}$$
 $2|\underline{24}$ 1 \Leftarrow LSB
 $2|\underline{12}$ 0
 $2|\underline{6}$ 0
 $2|\underline{3}$ 0
 $2|\underline{1}$ 1
 0 1 \Leftarrow MSB
จะได้ $49_{10}=110001_2$

2. หาทศนิยมคือ 0.37_{10}

$$0.37 \times 2 = 0.74$$
 \Rightarrow 0 \Leftarrow MSD $0.74 \times 2 = 1.48$ \Rightarrow 1 $0.48 \times 2 = 0.96$ \Rightarrow 0 $0.96 \times 2 = 1.92$ \Rightarrow 1 \Leftarrow LSD จะได้ $0.37_{10} = 0.0101_2$ ดังนั้น $49.37_{10} = 110001.0101_2$

2. การแปลงเลขฐานสิบเป็นเลขฐานแปด

การแปลงเลขฐานสิบเป็นเลขฐานแปดทำได้โดยเอาเลขฐานสิบตั้งแล้วหารด้วยเลข 8 ไปเรื่อย ๆ จนกระทั่งผลลัพธ์เป็น 0 ในการหารนั้นจะต้องเขียนเศษไว้ทุกครั้ง จากนั้นให้เขียนเศษที่ได้ จากการหารโดยเรียงลำดับจากด้านล่างขึ้นด้านบน **ตัวอย่าง 1.21** จงเปลี่ยน 342₁₀ ให้เป็นเลขในระบบฐานแปด ว**ิธีทำ**

$$8 | 342$$
 $8 | 42$
 $6 \iff LSB$
 $8 | 5$
 0
 $5 \iff MSB$
ดังนั้น $342_{10} = 526_8$

ตัวอย่าง 1.22 จงเปลี่ยน 437₁₀ ให้เป็นเลขในระบบฐานแปด วิธีทำ

$$8 \underline{437}$$
 $8 \underline{54}$ 5 \Leftarrow LSB
 $8 \underline{6}$ 6 \uparrow
 0 6 \Leftarrow MSB

ตัวอย่าง 1.23 จงเปลี่ยน 0.235_{10} ให้เป็นเลขในระบบฐานแปด (ตอบทศนิยม 4 ตำแหน่ง) วิธีทำ

$$0.235 \times 8 = 1.88$$
 \Rightarrow 1 \Leftarrow MSD $0.88 \times 8 = 7.04$ \Rightarrow 7 $0.04 \times 8 = 0.32$ \Rightarrow 0 $0.32 \times 8 = 2.56$ \Rightarrow 2 \Leftarrow LSD ดังนั้น $0.235_{10} = 0.1702_{8}$

ตัวอย่าง 1.24 จงเปลี่ยน 0.518_{10} ให้เป็นเลขในระบบฐานแปด (ตอบทศนิยม 4 ตำแหน่ง) วิธีทำ

ตัวอย่าง 1.25 จงเปลี่ยน 145.025₁₀ ให้เป็นเลขในระบบฐานแปด (ตอบทศนิยม 4 ตำแหน่ง) **วิธีทำ** พิจารณา 2 ส่วน คือ จำนวนเต็มคือ 145₁₀ และทศนิยมคือ 0.025₁₀ แล้วแปลงให้เป็นเลขใน ระบบฐานแปด

1. หาจำนวนเต็มคือ 145_{10}

$$8|\underline{145}$$
 $8|\underline{18}$ 1 \Leftarrow LSB
 $8|\underline{2}$ 2 \uparrow
 0 2 \Leftarrow MSB
จะได้ $145_{10} = 221_8$

2. หาทศนิยมคือ 0.025_{10}

$$0.025 \times 8 = 0.2$$
 \Rightarrow 0 \Leftarrow MSD $0.2 \times 8 = 1.6$ \Rightarrow 1 $0.6 \times 8 = 4.8$ \Rightarrow 4 $0.8 \times 8 = 6.4$ \Rightarrow 6 \Leftarrow LSD จะได้ $0.025_{10} = 0.0146_{8}$

ดังนั้น $145.025_{10} = 221.0146_8$

3. การแปลงเลขฐานสิบเป็นเลขฐานสิบหก

การแปลงเลขฐานสิบเป็นเลขฐานสิบหกทำได้โดยเอาเลขฐานสิบตั้งแล้วหารด้วยเลข 16 ไปเรื่อย ๆ จนกระทั่งผลลัพธ์เป็น 0 ในการหารนั้นจะต้องเขียนเศษไว้ทุกครั้ง จากนั้นให้เขียนเศษที่ได้ จากการหารโดยเรียงลำดับจากด้านล่างขึ้นด้านบน

ตัวอย่าง 1.26 จงเปลี่ยน 197₁₀ ให้เป็นเลขในระบบฐานสิบหก
ว**ิธีทำ**

$$16|\underline{197}$$
 $16|\underline{12}$ 5 \Leftarrow LSB
 0 12 \Leftarrow MSB
ดังนั้น $197_{10} = C5_{16}$

ตัวอย่าง 27 จงเปลี่ยน 578₁₀ ให้เป็นเลขในระบบฐานสิบหก
ว**ิธีทำ**

ดังนั้น
$$578_{10} = 242_{16}$$

ตัวอย่าง 1.28 จงเปลี่ยน 0.541₁₀ ให้เป็นเลขในระบบฐานสิบหก (ตอบทศนิยม 4 ตำแหน่ง) ว**ิธีทำ**

$$0.541 \times 16 = 8.656$$
 \Rightarrow 8 \Leftarrow MSD $0.656 \times 16 = 10.496$ \Rightarrow 10 \Rightarrow A $0.496 \times 16 = 7.936$ \Rightarrow 7 $0.936 \times 16 = 14.976$ \Rightarrow 14 \Rightarrow E \Leftarrow LSD ดังนั้น $0.541_{10} = 0.8A7E_{16}$

ตัวอย่าง 1.29 จงเปลี่ยน 0.694₁₀ ให้เป็นเลขในระบบฐานสิบหก (ตอบทศนิยม 4 ตำแหน่ง) วิธีทำ

$$0.694 \times 16 = 11.104$$
 \Rightarrow $11 \Rightarrow B \Leftarrow$ MSD $0.104 \times 16 = 1.664$ \Rightarrow 1 $0.664 \times 16 = 10.624$ \Rightarrow $10 \Rightarrow A$ $0.624 \times 16 = 9.984$ \Rightarrow $9 \Leftarrow$ LSD ดังนั้น $0.694_{10} = 0.B1A9_{16}$

ตัวอย่าง 1.30 จงเปลี่ยน 289.131₁₀ ให้เป็นเลขในระบบฐานสิบหก (ตอบทศนิยม 4 ตำแหน่ง) **วิธีทำ** พิจารณา 2 ส่วน คือ จำนวนเต็มคือ 289₁₀ และทศนิยมคือ 0.131₁₀ แล้วแปลงให้เป็นเลขใน ระบบฐานสิบหก

1. หาจำนวนเต็มคือ 289

2.หาทศนิยมคือ 0.131_{10}

$$0.131 imes 16 = 2.096 \Rightarrow 2 \Leftrightarrow MSD$$
 $0.096 imes 16 = 1.536 \Rightarrow 1$ $0.536 imes 16 = 8.576 \Rightarrow 8$ $0.576 imes 16 = 9.216 \Rightarrow 9 \Leftrightarrow LSD$ จะได้ $0.131_{10} = 0.2189_{16}$

ดังนั้น
$$289.131_{10} = 0.2109_{16}$$

การแปลงเลขฐานใด ๆ เป็นเลขฐานใด ๆ

ในการแปลงเลขฐานใด ๆ เป็นเลขฐานใด ๆ ที่จะกล่าวถึงนี้ แบ่งออกเป็น 4 วิธี คือ การ แปลงเลขฐานสอง เป็นเลขฐานแปดและเลขฐานสิบหก การแปลงเลขฐานแปด เลขฐานสิบหก เป็น เลขฐานสอง การแปลงเลขฐานแปดเป็นเลขฐานสิบหก และการแปลงเลขฐานสิบหกเป็นเลขฐานแปด ดังต่อไปนี้

1. การแปลงเลขฐานสองเป็นเลขฐานแปด

การแปลงเลขฐานสองเป็นเลขฐานแปด ทำได้โดยเขียนเลขฐานสอง 3 บิต แทนเลขฐาน แปด 1 ตัว ถ้าไม่ครบให้เพิ่มเลข 0 เข้าไป เขียนเรียงไปเป็นลำดับตามค่าเดิม ก็จะได้เลขฐานใหม่ ออกมา

ตัวอย่าง 1.31 จงเปลี่ยน 110011_2 ให้เป็นเลขในระบบฐานแปด วิธีทำ

$$\begin{array}{ccc} 110 & 011 \\ \downarrow & \downarrow \\ 6 & 3 \end{array}$$
 ดังนั้น $110011_{22}=63_8$

ตัวอย่าง 1.32 จงเปลี่ยน 10101110_2 ให้เป็นเลขในระบบฐานแปด วิธีทำ

$$\begin{array}{cccc} 010 & 101 & 110 \\ \downarrow & \downarrow & \downarrow \\ 2 & 5 & 6 \\$$
ดังนั้น $10101110_2 = 256_8$

ตัวอย่าง 1.33 จงเปลี่ยน 111101.100_2 ให้เป็นเลขในระบบฐานแปด วิธีทำ

ตัวอย่าง 1.34 จงเปลี่ยน 01101011.010_2 ให้เป็นเลขในระบบฐานแปด วิธีทำ

$$001$$
 101 011 . 010
$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$1 \qquad 5 \qquad 3 \qquad . \qquad 2$$
 ดังนั้น $01101011.010_2=153.2_8$

2. การแปลงเลขฐานสองเป็นเลขฐานสิบหก

การแปลงเลขฐานสองเป็นเลขฐานสิบหก ทำได้โดยเขียนเลขฐานสอง 4 บิต แทน เลขฐานสิบหก 1 ตัว ถ้าไม่ครบให้เพิ่มเลข 0 เข้าไป เขียนเรียงไปเป็นลำดับตามค่าเดิม ก็จะได้เลขฐาน ใหม่ออกมา

ตัวอย่าง 1.35 จงเปลี่ยน 11010110_2 ให้เป็นเลขในระบบฐานสิบหก วิธีทำ

ตัวอย่าง 1.36 จงเปลี่ยน 00101101001_2 ให้เป็นเลขในระบบฐานสิบหก วิธีทำ

$$0001$$
 0110 1001 \downarrow \downarrow \downarrow \downarrow 1 6 9 ดังนั้น $00101101001_2=169_{16}$

ตัวอย่าง 1.37 จงเปลี่ยน 0111010.0101_2 ให้เป็นเลขในระบบฐานสิบหก ว**ิธีทำ**

ตัวอย่าง 1.38 จงเปลี่ยน 1101010110.110_2 ให้เป็นเลขในระบบฐานสิบหก วิธีทำ

3. การแปลงเลขฐานแปดเป็นเลขฐานสอง

การแปลงเลขฐานแปดให้เป็นเลขฐานสอง ทำได้โดยเขียนเลขฐานสอง 3 บิต ถ้าไม่ครบ ให้เพิ่มเลข 0 เข้าไป เขียนเรียงไปเป็นลำดับตามค่าเดิม ก็จะได้เลขฐานใหม่ออกมา

ตัวอย่าง 1.39 จงเปลี่ยน 76₈ ให้เป็นเลขในระบบฐานสอง ว**ิธีทำ**

$$7 - 6$$

$$\downarrow \qquad \downarrow$$
 $111 - 110$ คังนั้น $76_8 = 111110_2$

ตัวอย่าง 1.40 จงเปลี่ยน 253₈ ให้เป็นเลขในระบบฐานสอง ว**ิธีทำ**

ตัวอย่าง 1.41 จงเปลี่ยน 34.72₈ ให้เป็นเลขในระบบฐานสอง วิธีทำ

ตัวอย่าง 1.42 จงเปลี่ยน 165.42_8 ให้เป็นเลขในระบบฐานสอง วิธีทำ

4. การแปลงเลขฐานสิบหกเป็นเลขฐานสอง

การแปลงเลขฐานสิบหกให้เป็นเลขฐานสอง ทำได้โดยเขียนเลขฐานสอง 4 บิต ถ้าไม่ ครบให้เพิ่มเลข 0 เข้าไป เขียนเรียงไปเป็นลำดับตามค่าเดิม ก็จะได้เลขฐานใหม่ออกมา

ตัวอย่าง 1.43 จงเปลี่ยน $7D_{\scriptscriptstyle 16}$ ให้เป็นเลขในระบบฐานสอง วิธีทำ

ตัวอย่าง 1.44 จงเปลี่ยน $6C5_{16}$ ให้เป็นเลขในระบบฐานสอง วิธีทำ

$$\begin{array}{cccc} 6 & C & 5 \\ \downarrow & \downarrow & \downarrow \\ 6 & 12 & 5 \\ 0110 & 1100 & 0101 \\$$
ีงนั้น $6C5_{16} = 011011000101_2 \end{array}$

ตัวอย่าง 1.45 จงเปลี่ยน 4*B*.2₁₆ ให้เป็นเลขในระบบฐานสอง ว**ิธีทำ**

ตัวอย่าง 1.46 จงเปลี่ยน 8E5.A3₁₆ ให้เป็นเลขในระบบฐานสอง วิธีทำ

5. การแปลงเลขฐานแปดเป็นเลขฐานสิบหก

การแปลงเลขฐานแปดเป็นเลขฐานสิบหก ทำได้แปลงจากเลขฐานแปดเป็นเลขฐานสอง ก่อน จากนั้นจึงทำแปลงเลขฐานสองที่ได้เป็นเลขฐานสิบหก

ตัวอย่าง 1.47 จงเปลี่ยน 245₈ ให้เป็นเลขในระบบฐานสิบหก วิธีทำ

ตัวอย่าง 1.48 จงเปลี่ยน 2133₈ ให้เป็นเลขในระบบฐานสิบหก วิธีทำ

ตัวอย่าง 1.49 จงเปลี่ยน 12.51₈ ให้เป็นเลขในระบบฐานสิบหก วิธีทำ

ตัวอย่าง 1.50 จงเปลี่ยน 437.65₈ ให้เป็นเลขในระบบฐานสิบหก

6. การแปลงเลขฐานสิบหกเป็นเลขฐานแปด

การแปลงเลขฐานสิบหกเป็นเลขฐานแปด ทำได้แปลงจากเลขฐานสิบหกเป็น เลขฐานสองก่อน จากนั้นจึงทำแปลงเลขฐานสองที่ได้เป็นเลขฐานแปด

ตัวอย่าง 1.51 จงเปลี่ยน 453₁₆ ให้เป็นเลขในระบบฐานแปด วิธีทำ

ตัวอย่าง 1.52 จงเปลี่ยน $4F3D_{16}$ ให้เป็นเลขในระบบฐานแปด วิธีทำ

ตัวอย่าง 1.53 จงเปลี่ยน $9AB.3E_{16}$ ให้เป็นเลขในระบบฐานแปด วิธีทำ

การกระทำทางคณิตศาสตร์ในระบบดิจิตอล

ในที่นี้จะพิจารณาการกระทำทางคณิตศาสตร์พื้นฐานที่ใช้ในระบบดิจิตอล ซึ่งมี 4 ชนิด คือ การบวก (Addition) การลบ (Subtraction) การคูณ (Multiplication) และการหาร (Division) แต่ ในเนื้อหานี้จะขอกล่าวถึงเฉพาะการบวกและการลบเท่านั้น ดังต่อไปนี้ (สิทธิชัย ประสานวงศ์. 2558 : 67)

1. การบวกเลขฐานสอง

โดยถ้าผลบว[ิ]กที่ได้มีค่าเกิน 1₁₀ ซึ่งไม่สามารถแสดงได้ด้วยเลขฐานสองเพียง 1 บิต จะต้องเพิ่มตัวทดในบิตที่สูงกว่าเพื่อแสดงผลบวกที่ได้นั้น แสดงได้ดังตารางแสดงผลดังนี้

ตัวตั้ง	ตัวบวก	ผลลัพธ์	ตัวทด
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

ตัวอย่าง 1.54 จงผลบวกของ 11011_2 กับ 11101_2 วิธีทำ

ดังนั้น
$$11011_2 + 11101_2 = 111000_2$$

ตัวอย่าง 1.55 จงผลบวกของ 10011_2 กับ 10100_2 วิธีทำ

$$\frac{10000}{10011} + \\ 10100 \\ \underline{\frac{100111}{10011_2 + 10100_2}} = 100111_2$$
ดังนั้น $10011_2 + 10100_2 = 100111_2$

2. การลบเลขฐานสอง

การลบเลขฐานสอง ตัวตั้งมีค่าน้อยกว่าตัวลบจึงต้องไปยืมหลักหน้ามา 1 ในการยืมแต่ ละครั้งของเลขฐานสองมีค่าเท่ากับ 2 เมื่อนำมาลบกับตัวลบคือ 1 จึงได้ผลลัพธ์เป็น 1 และอย่าลืมหัก หลักที่ถูกยืมออกอีก 1 ด้วย

ตัวตั้ง	ตัวลบ	ผลลัพธ์	ตัวยืม
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

ตัวอย่าง 1.56 จงผลลบของ 11101_2 กับ 10110_2 วิธีทำ

$$\begin{array}{c}
 0022 \\
 11101 \\
 \underline{10110} \\
 00111
 \end{array}$$

ดังนั้น
$$11101_2 + 10110_2 = 00111_2$$

ตัวอย่าง 1.57 จงผลลบของ 10001_2 กับ 1110_2 วิธีทำ

$$\frac{0112}{10001}$$

$$\frac{1110}{0011}$$
 ดังนั้น $10001_2 + 1110_2 = 0011_2$

บทสรุป

ระบบเลขฐานเป็นพื้นฐานในการเรียนคณิตศาสตร์ ซึ่งเป็นสัญลักษณ์ทางคณิตศาสตร์ที่ แสดงถึงจำนวนต่าง ๆ โดยระบบเลขฐานแต่ละระบบมีจำนวนตัวเลขที่ใช้เหมือนกับชื่อของระบบ ตัวเลขนั้น ๆ และมีฐานของจำนวนเลขตามชื่อ โดยระบบเลขฐานที่นิยมใช้โดยส่วนใหญ่ คือ เลขฐานสอง ประกอบด้วยตัวเลข 2 ตัว เลขฐานแปด ประกอบด้วยตัวเลข 8 ตัว เลขฐานสิบ ประกอบด้วยตัวเลข 10 ตัว และเลขฐานสิบหก ประกอบด้วยเลข 10 ตัวและตัวอักษร 6 ตัว ซึ่งเรา สามารถนำเลขฐานต่าง ๆ มาแปลงเป็นเลขฐานของระบบตัวเลขได้ ได้แก่ การแปลงเลขฐานใด ๆ เป็น เลขฐานสิบ การแปลงเลขฐานสิบเป็นเลขฐานใด ๆ การแปลงเลขฐานใด ๆ เป็นเลขฐานใด ๆ ซึ่ง ประกอบด้วย การแปลงเลขฐานสอง เป็นเลขฐานแปดและเลขฐานสิบหก การแปลงเลขฐานแปด เลขฐานสิบหก เป็นเลขฐานสอง การแปลงเลขฐานแปดเป็นเลขฐานสิบหก และการแปลงเลขฐานสิบ หกเป็นเลขฐานแปดในตอนสุดท้ายได้กล่าวถึงการกระทำทางคณิตศาสตร์ในระบบดิจิตอลด้วย

คำถามท้ายบท

 ระบบตัวเลขที่นิยมใช้งานในวง ประกอบด้วยตัวเลขอะไรบ้าง 	จรดิจิตอลใช้เลขฐานใดบ้าง และ	ะแต่ละเลขฐานมีจำนวนตัวเลขกี่ตัว					
2. จงแปลงเลขฐานสอง ต่อไปนี้ให้เป็นเลขฐานสิบ							
2.1 11011 ₂	2.2 110100001 ₂	2.3 101010.1 ₂					
3. จงแปลงเลขฐานแปด ต่อไปนี้ให้เป็นเลขฐานสิบ							
3.1 215 ₈	3.2 4317 ₈	3.3 57623 ₈					
4. จงแปลงเลขฐานสิบหก ต่อไปนี้	์ให้เป็นเลขฐานสิบ						
4.1 B25 ₁₆	4.2 $3E1C_{16}$	4.3 273 <i>FA</i> ₁₆					
5. จงแปลงเลขฐานสิบ ต่อไปนี้ให้เ	เป็นเลขฐานสอง						
5.1 83 ₁₀	5.2 275 ₁₀	5.3 716 ₁₀					
6. จงแปลงเลขฐานสิบ ต่อไปนี้ให้เ	เป็นเลขฐานแปด						
6.1 89 ₁₀	6.2 277 ₁₀	6.3 1049 ₁₀					
7. จงแปลงเลขฐานสิบ ต่อไปนี้ให้เ	เป็นเลขฐานสิบหก						
7.1 47 ₁₀	7.2 768 ₁₀	7.3 12471 ₁₀					
8. จงแปลงเลขฐานสอง ต่อไปนี้ให้เป็นเลขฐานสิบหก							
8.1 11101011001001 ₂		010.1101010_2					
9. จงแปลงเลขฐานสิบหก ต่อไปนี้ให้เป็นเลขฐานสอง							
$9.1 \ 5A2B_{16}$	9.2 <i>7DE</i> 0.	$1C_{16}$					
10. จงหาค่าต่อไปนี้							
$10.1 \ 1011_2 + 1101_2$	10.2 1001	$01_2 + 101011_2$					
$10.3 \ 101011_2 + 110101$	10.4 1011	$1_2 - 1101_2$					
$10.5 \ 11010_2 - 1101_2$	10.6 1101	$0_2 - 1101_2$					