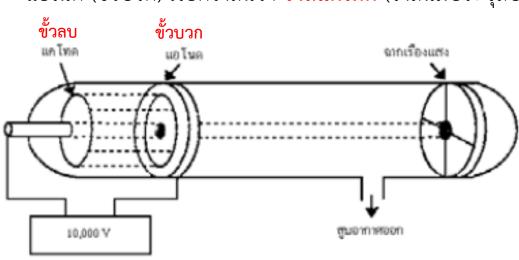
โครงสร้างอะตอม

อาจารย์ ดร. สุภาวรัตน์ ทัพสุริย์ สาขาวิชาเคมี คณะวิทยาศาสตร์

ประวัติของอะตอม

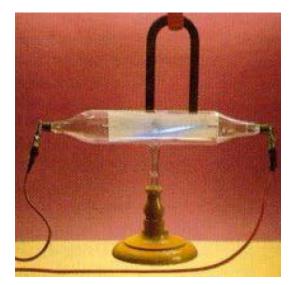
Leukippos และ Demokritos 📫 เสนอว่า "ส่วนประกอบที่เล็กที่สุดของสสารทำลายและแบ่งแยก ไม่ได้ เรียกว่า "อะตอม" (Atom มาจากภาษากรีก คือ Atomos = a+tomos = ไม่แบ่งแยกได้)

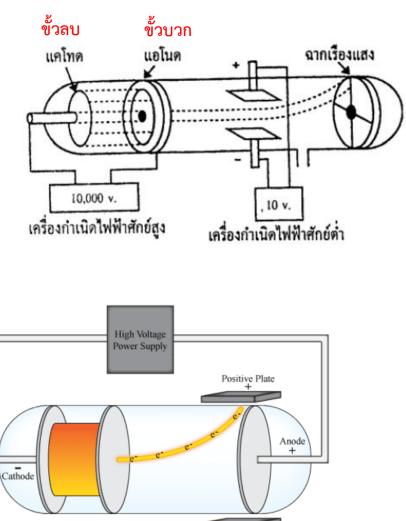

John Dalton 📫 เสนอว่า

-สารทุกชนิดประกอบด้วยอนุภาคขนาดเล็กที่สุดเรียกว่า "อะตอม" ซึ่งแบ่งแยกและทำให้สูญหายไม่ได้
 -อะตอมของธาตุชนิดเดียวกันมีสมบัติเหมือนกัน แต่จะมีสมบัติแตกต่างจากอะตอมของธาตุอื่น
 -สารประกอบเกิดจากอะตอมของธาตุมากกว่าหนึ่งชนิดทำปฏิกิริยาเคมีในอัตราส่วนที่เป็นเลขลงตัวน้อย ๆ

J.J. Thomson A ค้นพบ "อิเล็กตรอน" ทำการทดลองโดยใช้หลอดแคโธด (Cathod ray tube)

ศึกษาและทดลองเกี่ยวกับการนำไฟฟ้าของแก๊สในหลอดรังสีแคโทด
 หลอดรังสีแคโทดเป็นหลอดแก้ว ภายในสูบอากาศออกเกือบหมดและบรรจุแก๊สไว้เพียง
 เล็กน้อย เพื่อให้ภายในหลอดมีความดันต่ำมาก และเมื่อใช้อิเล็กโทรดและให้มีความ
 ต่างศักย์ 10,000 โวลต์ แก๊สจะนำไฟฟ้า และเกิดรังสีพุ่งออกจากแคโทด (ขั้วลบ) ไปยัง
 แอโนด (ขั้วบวก) เรียกรังสีนี้ว่า รังสีแคโทด (รังสีนี้มีประจุลบ)





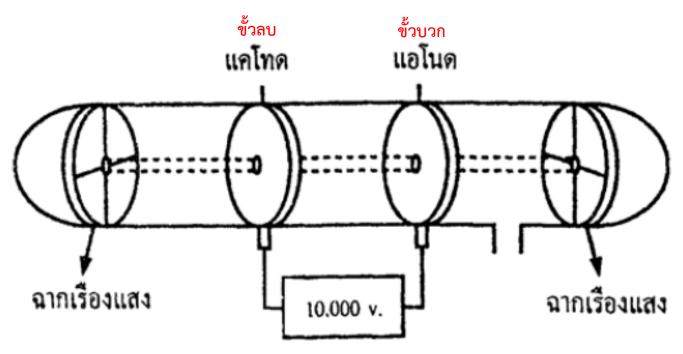
เครื่องกำเนิดไฟฟ้าศักย์สูง

ที่มา : https://www.topperlearning.com/answer/describe-j-j-thomson-39-s-cathode-ray-experiment

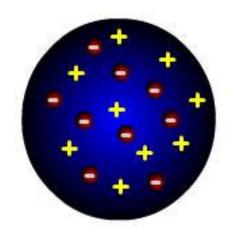
J.J. Thomson ค้นพบ "อิเล็กตรอน"
 ทำการทดลองโดยใช้หลอดแคโธด (Cathod ray tube)
 -นำสนามไฟฟ้าภายนอกมาล่อ ทำให้พบว่า
 รังสีแคโทด ประกอบด้วย อนุภาคของอิเล็กตรอน

ทอมสันได้สรุปว่าอะตอมของธาตุทุกชนิดต้องมีอนุภาคที่มีประจุลบและเรียกว่า <mark>อิเล็กตรอน</mark> (electron = e⁻)

 $\frac{e}{m} = 1.76 \times 10^8 c / g$


e : ประจุอิเล็กตรอน (คูลอมบ์)m : มวลอิเล็กตรอน (กรัม)

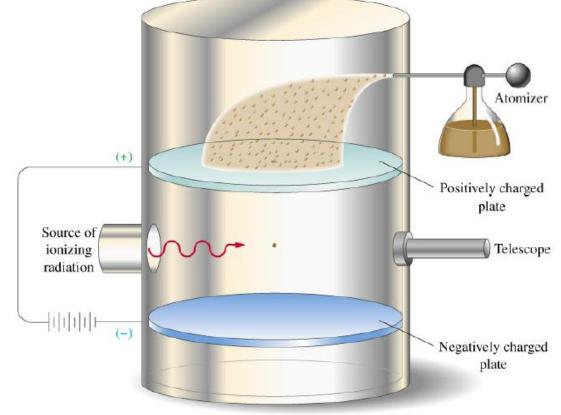
ค่าที่ได้นี้เป็นค่าคงที่และเพียงค่าเดียวไม่ขึ้นกับชนิดของแก๊สที่บรรจุในหลอด ไม่ขึ้นกับชนิดของ โลหะที่ใช้ทำขั้วไฟฟ้า ด้วยเหตุนี้ทอมสันจึงสรุปว่า "อิเล็กตรอนเป็นอนุภาคมูลฐานที่มีอยู่ในอะตอมของ ธาตุทุกชนิด"


การค้นพบโปรตอน

โกลด์สไตน์ (Goldstein)

 iสนอแบบจำลองอะตอมที่มีนิวเคลียส
 เมื่อทดลองกับก๊าซหลายชนิด พบว่ามีอัตราส่วนของประจุต่อมวลของอนุภาคบวกไม่คงที่ ขึ้นอยู่กับ
 ชนิดของก๊าซที่บรรจุภายใน และเมื่อเขาใช้ก๊าซไฮโดรเจนทดลองจะได้อนุภาคบวกที่มีประจุเท่ากับ
 อิเล็กตรอน จึงตั้งชื่อว่า โปรตอน (Proton = p⁺)

J.J. Thomson i สรุปได้ว่า "อะตอมมีลักษณะเป็นทรงกลมประกอบด้วยเนื้ออะตอม ซึ่งมีประจุไฟฟ้า เป็นบวกและมีอิเล็กตรอนมีประจุไฟฟ้าเป็นลบกระจายตัวอยู่ทั่วไปอย่างสม่ำเสมอภายในอะตอม อะตอม อยู่ในสภาพเป็นกลางทางไฟฟ้า ภายในอะตอมมีประจุบวกเท่ากับประจุลบ"


แบบจำลองอะตอมของทอมสัน

การทดลองหยดน้ำมันมิลลิแกน

โรเบิร์ต มิลลิแกน (R. Millikan) 📫 ค้นพบ "ประจุของอิเล็กตรอน"

หาประจุของอิเล็กตรอน โดยวัดค่าสนามไฟฟ้าที่ทำให้แรงดึงดูดระหว่างประจุ (แรงคูลอมป์) บน ละอองน้ำมันเท่ากับค่าแรงโน้มถ่วงของโลก

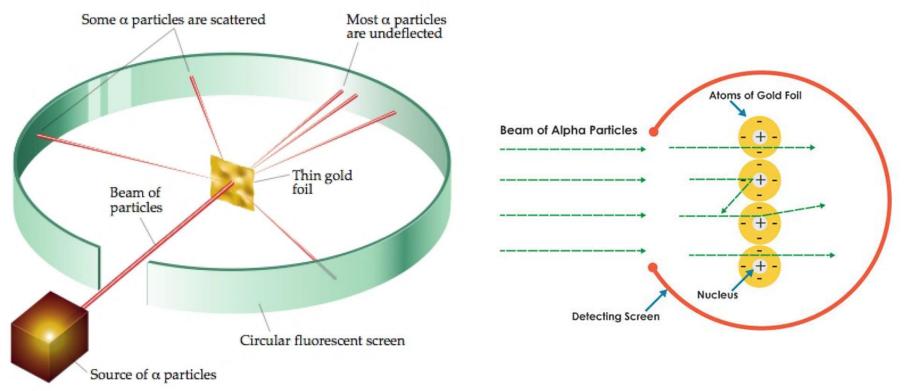
การทดลองหยดน้ำมันมิลลิแกน

อิเล็กตรอน									
ประจุ(กูลอมบ์)	มวล(กรัม)								
1.60 * 10 ⁻¹⁹	9.11 * 10 ⁻²⁸								

$$\frac{e}{m} = 1.76x10^8$$

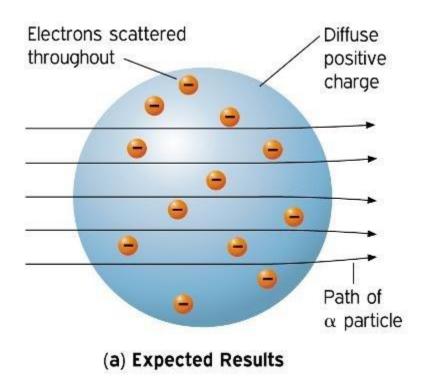
$$e = 1.60x10^{-19}$$

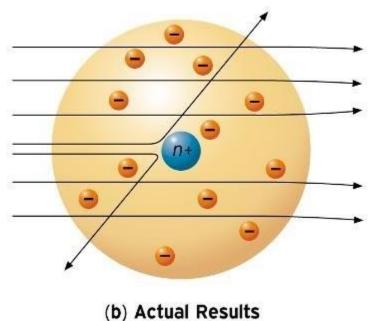
$$m = \frac{1.60x10^{-19}}{1.76x10^8}$$

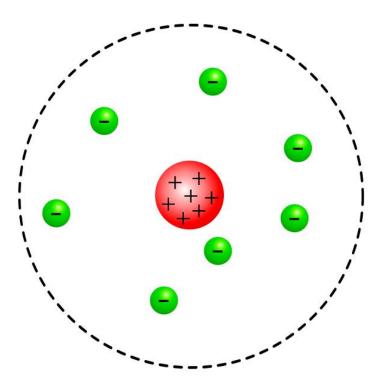

$$m = 9.11x10^{-28}g$$

$$m = 9.11x10^{-31}kg$$

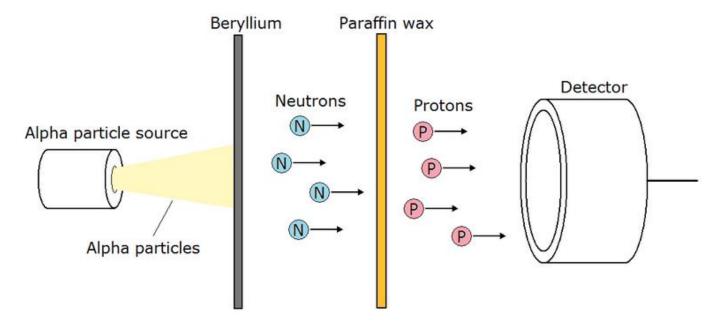
การกระเจิงอนุภาคแอลฟา

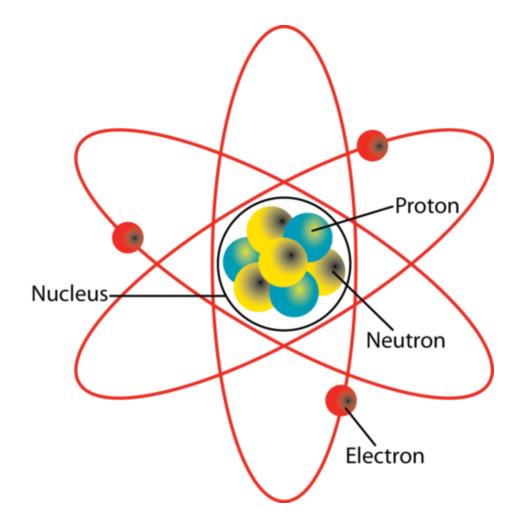

อี อาร์ รัทเทอร์ฟอร์ด (E.R. Rutherford) 📫


ทำการทดลองยิ่งอนุภาคแอลฟาไปยังแผ่นทองคำบาง ๆ มีความหนาเพียง 0.0004 mm เรียกการ ทดลองนี้ว่า การกระเจิงรังสีแอลฟาของรัทเทอร์ฟอร์ด


ที่มา : https://www.pinterest.com/pin/418623727836274735/

การกระเจิงอนุภาคแอลฟา


การกระเจิงอนุภาคแอลฟา


แบบจำลองอะตอมของรัทเทอร์ฟอร์ด

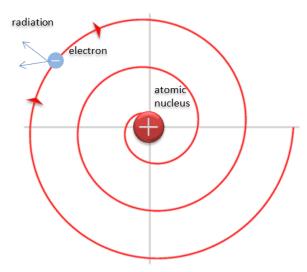
การค้นพบนิวตรอน

เซอร์ เจมส์ แชดวิก (Sir Jame Chadwick)
 โด้ค้นพบ "นิวตรอน"
 W.Bothe และ H.Becker ได้ทำการทดลองใช้อนุภาคแอลฟายิ่งแผ่นโลหะแบริลเลียม ปรากฏว่าเกิด
 รังสีซึ่งไม่มีประจุชนิดหนึ่งที่มีอำนาจทะลวงได้ดี และรังสีนี้เมื่อชนกับโมเลกุลของพาราฟินจะได้โปรตรอน
 ออกมา ต่อมา Jame Chadwich ได้เสนอว่ารังสีนี้ต้องประกอบด้วยอนุภาคและให้ชื่อว่า นิวตรอน และได้
 ทำการพิสูจน์ได้ว่านิวตรอนไม่มีประจุ และคำนวณมวลนิวตรอนได้ค่าใกล้เคียงกับมวลของโปรตรอน

การค้นพบนิวตรอน

อนุภาคภายในอะตอม

อนุภาค	สัญลักษณ์	ชนิดประจุ	ประจุไฟฟ้า	มวล (kg)	มวลอนุภาค : มวล e
อิเล็กตรอน	e	-1	1.602×10^{-19}	9.109 × 10 ⁻³¹	1
โปรตอน	р	+1	1.602×10^{-19}	1.672 × 10 ⁻²⁷	1836
นิวตรอน	n	0	0	1.674 × 10 ⁻²⁷	1839


Mass number (number of protons plus neutrons) Atomic number (number

of protons or electrons)

ข้อจำกัดของแบบจำลองอะตอมของรัทเทอร์ฟอร์ด

 ไม่สามารถอธิบายได้ว่า ทำไมอิเล็กตรอนจึงสามารถโคจรรอบนิวเคลียสได้ ทั้งๆ ที่การโคจรรอบ นิวเคลียสจะเกิดความเร่งสู่ศูนย์กลาง จากความรู้เรื่องคลื่อนแม่เหล็กไฟฟ้า ที่ว่า อิเล็กตรอนที่เคลื่อนที่ โดยมีความเร่งจะแผ่คลื่นแม่เหล็กไฟฟ้าออกมา ดังนั้น อิเล็กตรอนที่สูญเสียพลังงานจลน์ ทำให้อิเล็กตรอน วิ่งช้าลง และในที่สุดจะวนเข้าไปรวมกับนิวเคลียส

Failure of Classical Physics

ที่มา : https://www.nuclear-power.net/nuclear-power/reactor-physics/atomic-nuclearphysics/atomic-theory/bohr-model-of-atom/

จุดเริ่มต้นของทฤษฎีกลศาสตร์ควอนตัม

ทฤษฎีกลศาสตร์ดั้งเดิม (Classical mechanical) ล้มเหลวในการอธิบายระบบบางระบบ เช่น

การแผ่รังสีของวัตถุดำ (Blackbody radiation)

ปรากฏการณ์โฟโตอิเล็กทริก (Photoelectric effect)

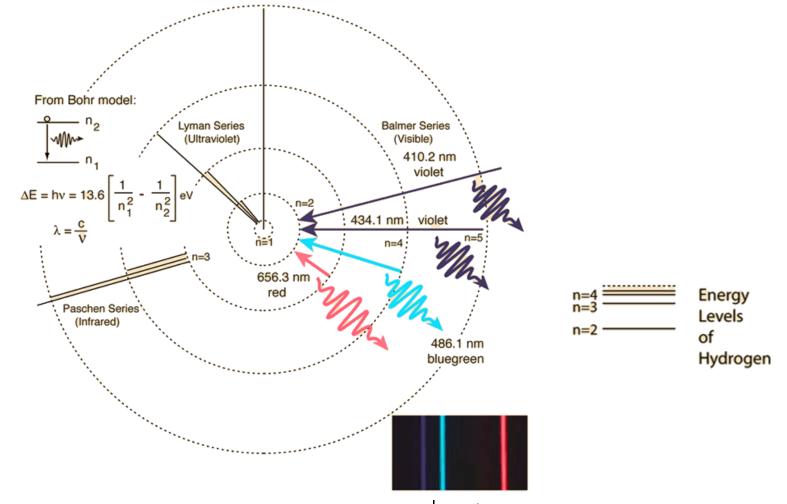
สเปกตรัมของอะตอมไฮโดรเจน (Spectrum of hydrogen atom)

แบบจำลองอะตอมโบร์

Niels Bohr 헞 เสนอแบบจำลองอะตอมโดยอาศัยทฤษฎีควอนตัมของพลังค์และอัลเบริ์ต ไอน์สไตน์ เกี่ยวกับความสัมพันธ์ระหว่างพลังงานกับความถี่ของคลื่น และสรุปได้ว่า

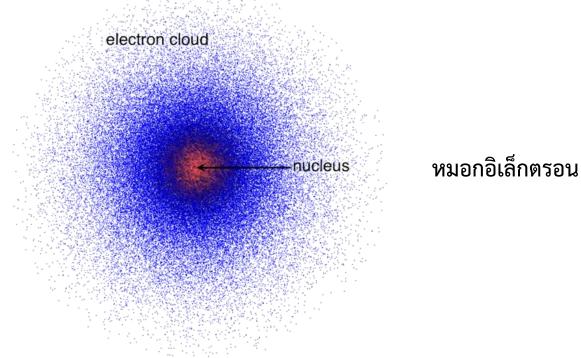
 อะตอมมีนิวเคลียสเป็นศูนย์กลางและมีอิเล็กตรอนเคลื่อนที่รอบนิวเคลียสเป็นวงกลม อยู่ในระดับ พลังงานต่างๆ กัน

- แต่ละอิเล็กตรอนจะมีพลังงานเฉพาะค่าหนึ่ง การเคลื่อนที่ของอิเล็กตรอนไม่มีการสูญเสียพลังงาน



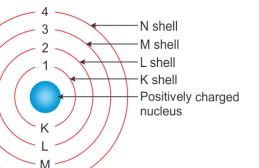
แบบจำลองอะตอมโบร์

中 เมื่ออิเล็กตรอนเปลี่ยนวงโคจร จะมีการดูดหรือคายพลังงาน


แบบจำลองอะตอมโบร์

Bohr's method มีข้อจำกัด คือ ใช้ได้ดีกับอะตอมหรือไอออนที่มีอิเล็กตรอนตัวเดียว เช่น H-atom, He+, Li²⁺

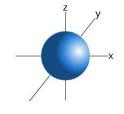
กลศาสตร์เชิงคลื่น

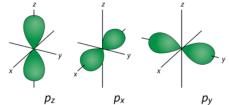

ชเรอดิงเงอร์ (Erwin Schrodinger) สามารถพบอิเล็กตรอนได้ทุกแห่งในอะตอมบริเวณที่น่าจะพบอิเล็กตรอนได้มากที่สุดจะอยู่ที่ ระยะห่างจากนิวเคลียส 52.9 pm ดังนั้นอะตอมว่ามีนิวเคลียสถูกล้อมรอบด้วยหมอกอิเล็กตรอน (electron cloud) และตำแหน่งของอิเล็กตรอนว่า **ออร์บิทัลอะตอม** และสามารถอธิบายได้ด้วยตัวเลขที่ เรียกว่า **เลขควอนตัม**

เลขควอนตัมเป็นเลขที่ใช้ในการอธิบายถึงพฤติกรรมของอิเล็กตรอนในอะตอมหนึ่งๆ เลขควอนตัม (Quantum number) มี 4 ชนิด คือ *n, l, m_l* และ *m_s*

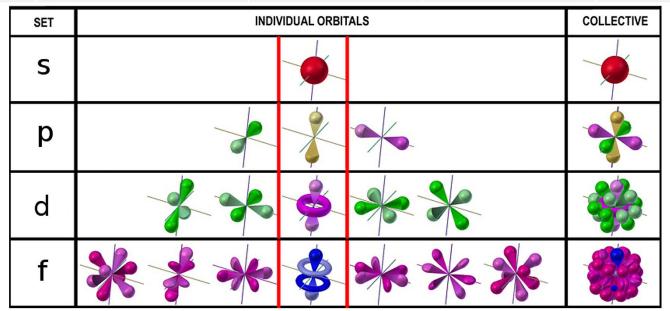
- 1. เลขควอนตัมหลัก (*n*)
 - เลขจำนวนเต็มบวก มีค่า 1, 2, 3,...
 - บอกถึง ระดับพลังงานหลักของอิเล็กตรอนในอะตอม

ถ้า n มีค่ามาก ออร์บิทัลจะมีขนาดใหญ่และขยายตัวออกจาก นิวเคลียสมากขึ้น ตำแหน่งของอิเล็กตรอนจะอยู่ห่างจากนิวเคลียสและจะมี พลังงานสูงขึ้น

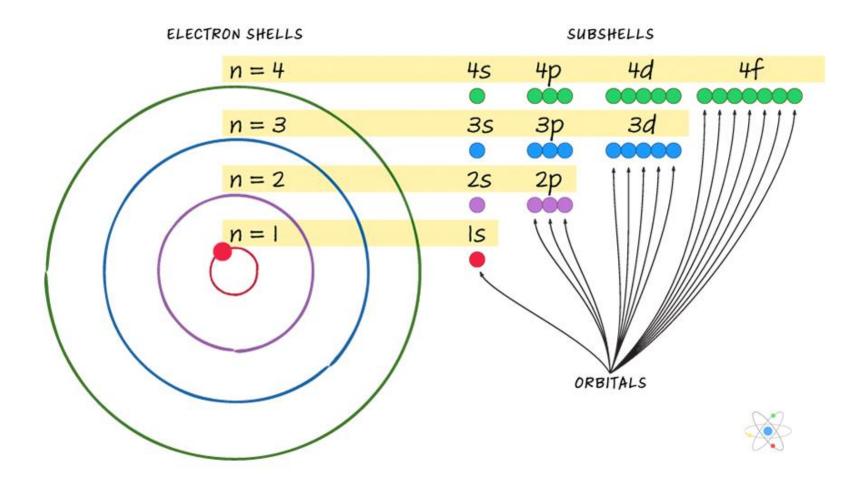

n	1	2	3	4	5
Shell	К	L	М	Ν	0


2. เลขควอนตัมออร์บิทัล (l) หรือเลขควอนตัมโมเมนตัมเชิงมุม

- บอกถึงระดับพลังงานย่อยของระดับพลังงานหลัก n และเกี่ยวข้องกับโมเมนตัมเชิงมุมในขณะที่ อิเล็กตรอนเคลื่อนที่


- บอกถึงรูปร่างของออร์บิทัลของอิเล็กตรอน
- ระดับพลังงานย่อยในระดับพลังงานหลัก
- ค่า l ขึ้นกับค่า n คือ มีค่า 0, 1, 2,... และมีได้จำนวนเท่ากับ n ค่า
- เช่น อิเล็กตรอน มี n = 1 จะมีค่า l มีจำนวน 1 ค่า คือ 0

นั่นคือ ในระดับพลังงานย่อยค่าเดียว จะมีออร์บิทัลชนิดเดียวที่มีค่า l = 0 ซึ่งมีรูปร่างเป็นทรงกลม

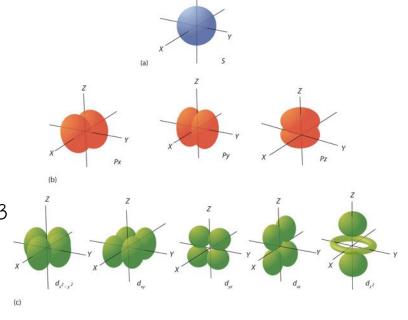


n	ι		ι		ι		ι	ชนิดออร์บิทัล	รูปร่าง
1	0	(1 ค่า)	0	S	ทรงกลม				
2	0, 1	(2 ค่า)	1	р	กลีบ 2 กลีบ				
3	0, 1, 2	(3 ค่า)	2	d	กลีบ 4 กลีบ				
4	0, 1, 2, 3	(4 ค่า)	3	f	กลีบ 6 กลีบ				

ที่มา : https://www2.dawsoncollege.qc.ca/dbaril/NYA/Handout/Orbital/Orbital.htm

3. เลขควอนตัมแม่เหล็ก (m_เ)

 - ออร์บิทัลมีรูปร่างเหมือนกันแต่ทิศทางของออร์บิทัลในที่ว่างต่างกัน เป็นผลให้เกิดค่า m_เ ต่างกัน แสดงว่าในแต่ละค่าของ l จะมี m_i ได้หลายค่า


- ค่า m_l จะขึ้นกับค่า *l* คือ มีค่า +*l*, ..., 0, ..., -*l* จำนวน 2*l* + 1
- มีค่าระหว่าง เ ถึง –เ
- รวม 2l + 1

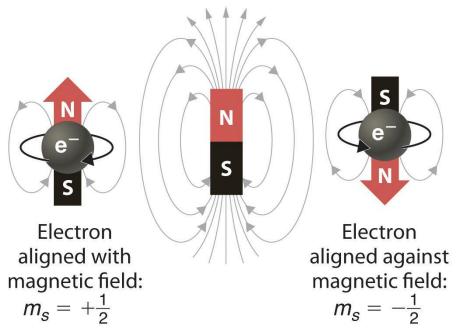
$$l = 0 , m_{l} = 0$$

$$l = 1 , m_{l} = 0, +1, -1$$

$$l = 2 , m_{l} = 0, +1, +2, -1, -2$$

$$l = 3 , m_{l} = 0, +1, +2, +3, -1, -2, -3$$

เลขควอนตัมสปิน (m_s)

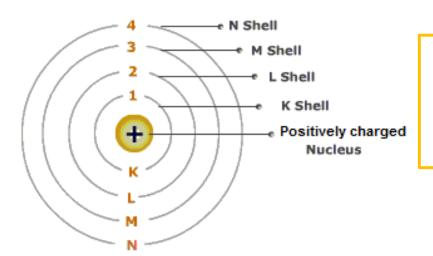

- เป็นตัวเลขบอกทิศางการหมุนรอบตัวเองของอิเล็กตรอน นั่นคือ ในขณะที่อิเล็กตรอนเคลื่อนที่ก็
 จะหมุนรอบตัวเองไปด้วย

อิเล็กตรอนมีประจุลบหมุนรอบตัวเองทำให้อิเล็กตรอนเป็นเสมือนแท่งแม่เหล็กเล็กๆ

- การหมุนรอบตัวเองของอิเล็กตรอนมี 2 แบบ คือ

1. หมุนทวนเข็มนาฬิกา เรียกว่าหมุนขึ้น (spin up) m_s = +1/2 อิเล็กตรอนในสภาพ สปินขึ้น ↑

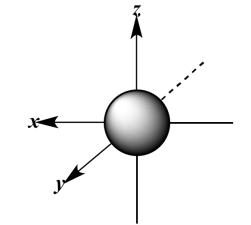
2. หมุนทวนเข็มนาฬิกา เรียกว่าหมุนขึ้น (spin up)
 m_s = -1/2 อิเล็กตรอนในสภาพ สปินลง ↓

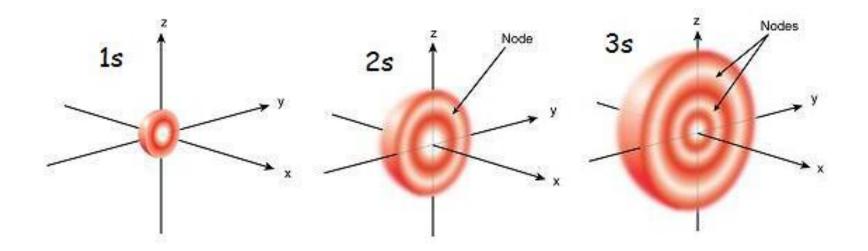


ที่มา : https://chem.libretexts.org/Courses/BethuneCookman_University/BCU%3A_CH_332_Physical_Chemistry_ II/Text/8%3A_Multielectron_Atoms/8.04%3A_

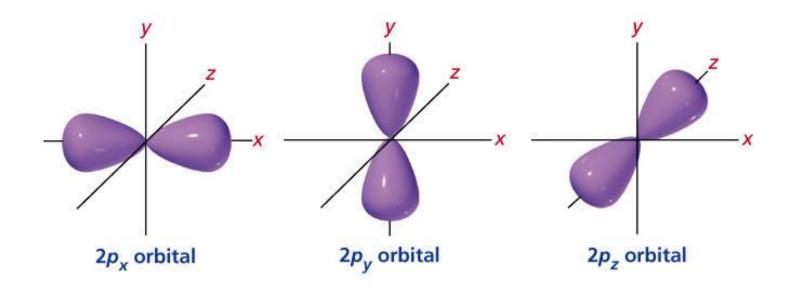
เลขควอนตัม n บอกให้ทราบว่า อิเล็กตรอนอยู่ในระดับพลังงานหลักใด **เลขควอนตัม l** บอกให้ทราบว่า อิเล็กตรอนอยู่ในออร์บิทัลใด **เลขควอนตัม m** บอกให้ทราบว่า อิเล็กตรอนนี้อยู่ในออร์บิทัลที่มีค่า m ใดที่มีระดับพลังงานต่ำสุดในสนามแม่เหล็ก

เลขควอนตัม m บอกให้ทราบว่า อิเล็กตรอนมีลักษณะการหมุนเช่นใด จำนวนออร์บิทัลในแต่ l orbital n m ละขนิดของออร์บิทัล 1 0 1s 0 1 2 0 2s 0 1 +1 0 -1 3 1 2p 3 0 3s 0 1 +1 0 -1 3p 3 1 +2 +1 0 -1 2 5 2 3d 4s 4 0 1 0 +1 0 -1 3 1 4p +2 +1 0 -1 2 2 4d 5 4f +3 +2 +1 0 -1 2 3 3 7


n	shell	ι	subshell
1	К	0	S
2	L	0,1	s,p
3	Μ	0,1,2	s,p,d
4	Ν	0,1,2,3	s,p,d,f



หลักการกีดกันเพาลี กล่าวว่า ไม่มีอิเล็กตรอนคู่หนึ่งคู่ใด ในอะตอมเดียวกันที่จะมีเลขควอนตัมทั้งสี่เหมือนกัน


ที่มา : https://forum.byjus.com/the-increasing-order-of-the-energy-levels-in-an-atom

- 1. s-orbital ($l = 0; m_l = 0$)
 - รูปร่างของออร์บิทัลเป็นทรงกลม ค่า n เพิ่มขนาดออร์บิทัลเพิ่ม ขนาด 1s < 2s < 3s < 4s <...

- 2. p-orbital ($l = 1; m_l = +1, 0, -1$)
 - ลักษณะเป็นรูปดัมเบล หรือ 2 lope p-orbital มี 3 ออร์บิทัล -> p_x, p_y, p_z ค่า n เพิ่ม ขนาดออร์บิทัลเพิ่ม

3. d-orbital (*l* = 2; *m*_l = +2, +1, 0, -1, -2)

- ลักษณะเป็นรูปดัมเบลคู่ หรือ 4 lope lope อยู่ระหว่างแกน xy, xz, yz เรียกว่า d_{xy} , d_{xz} , d_{yz} lope อยู่บนแกน xy เรียกว่า $d_{x^2-y^2}$ orbital lope อยู่บนแกน z เรียกว่า d_{z^2} orbital

แบบฝึกหัดที่ 1 จงเขียนสัญลักษณ์ของออร์บิทัลที่มีเลขควอนตัมต่อไปนี้

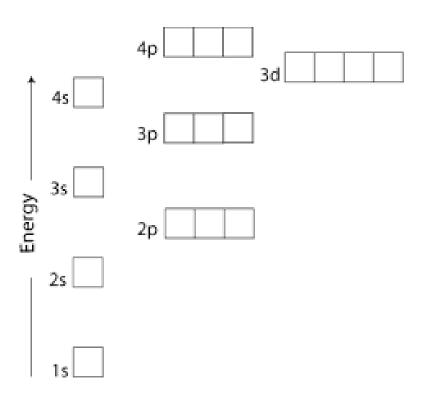
ก) n = 2, l = 0

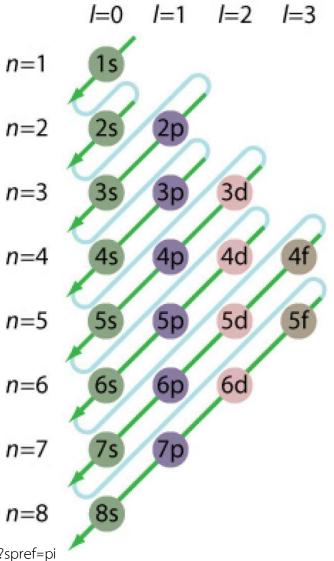
ข) n = 3, l = 2

P(n) = 4, l = 1

\$) n = 5, l = 3

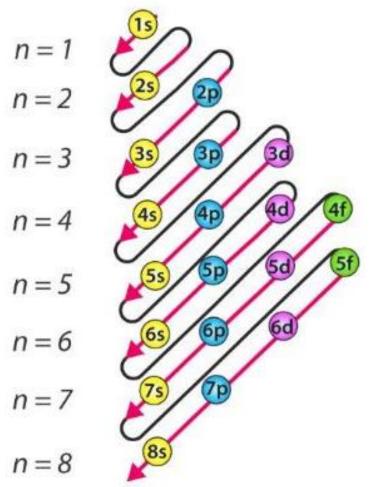
<mark>แบบฝึกหัดที่ 2</mark> จงเขียนเลขควอนตัม n l และ m_l ของออร์บิทัลต่อไปนี้ ก) 2p

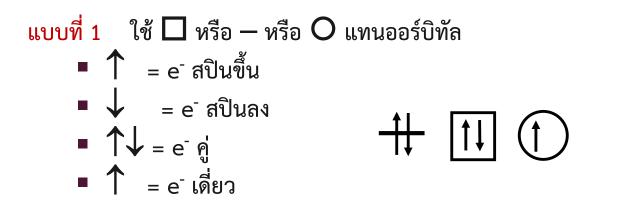

ข) 3p


ค) 3d

ระดับพลังงานของออร์บิทัล

การเรียงลำดับพลังงานของออร์บิทัลจากต่ำไปสูง จะ เป็น


1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < ...


ระดับพลังงานของออร์บิทัล

l=0 *l*=1 *l*=2 *l*=3

- 1. อิเล็กในแต่ละออร์บิทัล s-orbital บรรจุ e⁻ ได้มากสุด 2 ตัว p-orbital บรรจุ e⁻ ได้มากสุด 6 ตัว d-orbital บรรจุ e⁻ ได้มากสุด 10 ตัว f-orbital บรรจุ e⁻ ได้มากสุด 14 ตัว
- 2. เมื่อ n = 1 มีออร์บิทัล 1s n = 2 มีออร์บิทัล 2s 2p n = 3 มีออร์บิทัล 3s 3p 3d
- 3. ในแต่ละระดับหลัก n จำนวนออร์บิทัลทั้งหมด = n² จำนวนอิเล็กตรอนทั้งหมด = 2n²

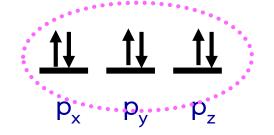
การบรรจุอิเล็กตรอนในออร์บิทัล

แบบที่ 2 เขียนเป็นตัวเลขและตัวอักษร แสดงชนิดของออร์บิทัล (1s, 2s, 2p) และจำนวนอิ เลกตรอนในออร์บิทัลเช่น

- 1s² (มี e⁻ 2 ตัวใน 1s-orbital)
- 2p^{6 (}มี e⁻ 6 ตัวใน 2p-orbitals p_x, p_y, p_z)

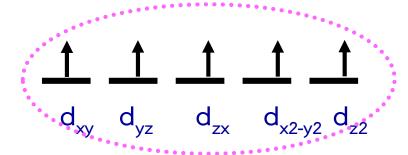
ล้ำดับการบรรจุอิเล็กตรอน

โครงแบบอิเล็กตรอนแสดงการจัดเรียงอิเล็กตรอนในออร์บิทัลต่างๆ ของอะตอม มีหลักเกณฑ์ ดังนี้


 หลักของเอฟบาว (Aufbau principle) -> "อิเล็กตรอนจะเข้าไปอยู่ในออร์บิทัลที่มี พลังงานต่ำสุดและว่างก่อนเสมอ"

 หลักของเพาลี (Pauli exclusion principle) -> "ในแต่ละออร์บิทัลจะมีอิเล็กตรอนได้ไม่ เกิน 2 ตัว และต้องมีสปินในทิศทางตรงข้ามกัน" 14

กฎของฮุนด์ (Hund's rule) -> ออร์บิทัลที่มีระดับพลังงานเท่ากันจะจัดเรียงให้มีอิเล็กตรอน เดี่ยวมากที่สุด <u>1 1 1</u>


สำหรับออร์บิทัลที่มีระดับพลังงานที่เท่ากัน (degeneracy)

ถ้าทุกๆออร์บิทัล มี e⁻ เต็ม → การบรรจุเต็ม

$$\begin{array}{c|c} \uparrow \downarrow & \uparrow \downarrow \\ d_{xy} & d_{yz} & d_{zx} & d_{x2-y2} & d_{z2} \end{array}$$

ถ้าทุกๆออร์บิทัล มี e⁻ เพียงครึ่งเดียว → การบรรจุครึ่ง



ความเสถียร

การบรรจุเต็ม > การบรรจุครึ่ง > แบบอื่นๆ เช่น
 2p³ เสถียรกว่า 2p⁴

 $3d^{10}$ เสถียรกว่า $3d^5$ เสถียรกว่า $3d^7$

โครงแบบอิเล็กตรอนของธาตุในคาบที่ 3 ตั้งแต่ Na -> Ar เขียนในทำนองเดียวกัน

จะเห็นว่า Na จะมีโครงแบบอิเล็กตรอนเป็น 1s² 2s² 2p⁶ 3s¹ และมักเขียนย่อเป็น [Ne] 3s¹

นั่นคือ ในส่วนที่เหมือนกับโครงแบบอิเล็กตรอนของแก๊สเฉื่อย จะเขียนแทนด้วยสัญลักษณ์ของ แก๊สเฉื่อยในวงเล็บ [] ส่วนที่เหลือก็เขียนเพิ่มต่อไป เช่น

$$_{16}S = [Ne] 3s^2 3p^4$$

 $_{20}Ca = [Ar] 4s^2$
 $_{46}Pd = [Kr] 5d^8 4s^2$

	จน.e⁻	1s	2s	2p _x 2p _y 2p _z	3s	การจัดเรียงอิเล็กตรอน
н	1					1s ¹
Не	2					1s ²
Li	3					1s ² 2s ¹
С	6					1s ² 2s ² 2p ²
0	8					1s ² 2s ² 2p ⁴
Ne	10					1s ² 2s ² 2p ⁶
Na	11					1s ² 2s ² 2p ⁶ 3s ¹

<mark>แบบฝึกหัดที่</mark> 8 จงเขียนการจัดเรียงอิเล็กตรอน พร้อมทั้งเขียนโครงแบบอิเล็กตรอนของแก๊สเฉื่อย ก) ₇N

ข) ₁₉K

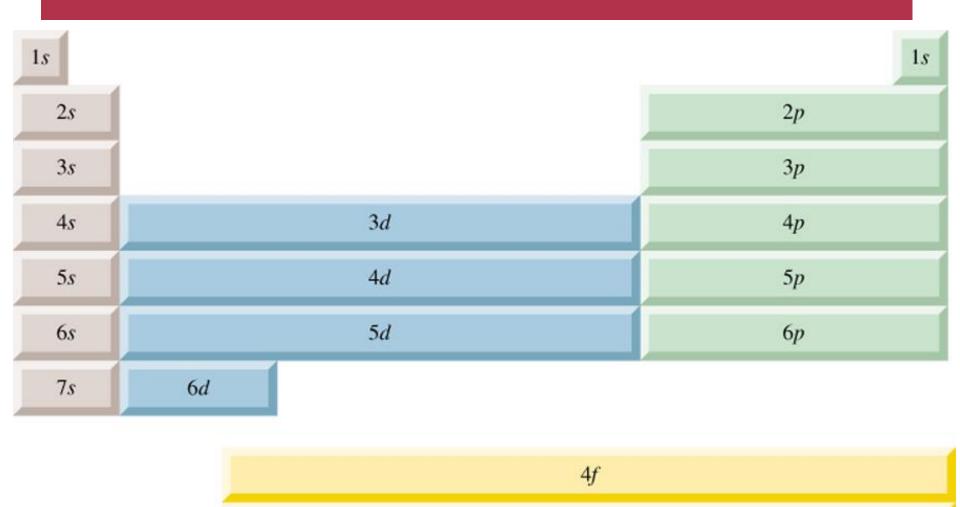
ค) ₂₁Sc

<mark>แบบฝึกหัดที่</mark> 8 จงเขียนการจัดเรียงอิเล็กตรอนพร้อมทั้งเขียนโครงแบบอิเล็กตรอนของแก๊สเฉื่อย

۹) ₂₄Cr

ຈ) ₂₉Cu

ລ) ₁₆S²⁻


<mark>แบบฝึกหัดที่ 8</mark> จงเขียนการจัดเรียงอิเล็กตรอน พร้อมทั้งเขียนโครงแบบอิเล็กตรอนของแก๊สเฉื่อย ช) ₁₂Mg²⁺

ଏ) ₃₃As³⁺

ฦ) ₂₃V²⁺

1A 1 2.008 H Hydrogen	2A	ATOM										3A	4A	5A	6A	7A	8A 2 4.003 Hee Helium
3 6.941 Lithium									5 10.811 B Boron 13 26.982	6 12.011 C Carbon 14 28.086	7 14.007 N Nitrogen 15 30.974	8 15.999 Oxygen 16 32.066	9 18.988 F Fluorine 17 35:453	10 20.180 Neon 18 39.948			
Na	Mg Magnesium	3B	4B	5B	6B	7B		-8B-		1B	2B	Aluminum	Silicon	Phosphorus	S Sulfur	CI	Ar Argon
19 39.098 K Potassium	20 40.078 Ca Calcium	21 44.956 Scandium	22 47.88 Ti Titanium	23 50.942 V Vanadium	24 51.996 Cr Chromium	25 54.938 Manganese	26 55.933 Fe	27 58.933 CO Cobalt	28 58.693 Nickel	29 63.546 Cu Copper	30 65.39 Zn Zinc	Gallium	32 72.61 Germanium	As Arsenic	34 78.972 Se Selenium	35 79.904 Br Bromine	36 84.80 Krypton
37 84.468 Rb Rubidium	38 87.62 Sr Strontium	39 88.906 Y Yttrium	40 91.224 Zr Zirconium	41 92.906	42 95.95 MO Molybdenum	43 98.907 TC Technetium	44 101.07 Ru Ruthenium	45 102.906 Rh Rhodium	46 106.42 Pd Palladium	47 107.868 Ag Silver	48 112.411 Cd Cadmium	49 114.818 In Indium	50 118.71 Sn Tin	51 121.760 Sb Antimony	52 127.6 Te Tellurium	53 126.904	54 131.29 Xe Xenon
55 132.905 CS Cesium	56 137.327 Ba Barium	57-71 Lanth- anides	72 178,49 Hf Hafnium	73 180.948 Ta Tantalum	74 183.85 W Tungsten	75 186.207 Re Rhenium	76 190.23 OS Osmium	77 192.22 Ir Iridium	78 195.08 Pt Platinum	79 196.967 Au Gold	80 200.59 Hg Mercury	81 204.383	82 207.2 Pb Lead	83 208.980 Bi Bismuth	84 208.982 PO Polonium	85 209.987 At Astatine	86 222.038 Rn Radon
87 223.020 Fr Francium	88 226.025 Ra Radium	89-103 Actinides	104 (261) Rf Rutherfordium	105 (262) Db Dubnium	106 (266) Sg Seaborgium	107 (264) Bh Bohrium	108 (269) HS Hassium	109 (268) Mt Meitnerium	110 (269) DS Darmstadtium	111 (272) Rg Roentgenium	112 (277) Cn Copernicium	113 ^{unknown} Uut Ununtrium	114 (289) FI Flerovium	115 ^{unknown} Uup Ununpentium	116 ⁽²⁹⁸⁾ LV Livermorium	UUUS Ununseptium	118 ^{unknown}
	Lantha Act	inides	57 138.906 La Lanthanum 89 227.028 AC Actinium	58 140.115 Cee Cerium 90 232.038 Thh Thorium	59 140.908 Praseodymium 91 231.036 Pa Protactinium	60 144.24 Nd Neodymium 92 238.029 Uranium	61 144.913 Promethium 93 237.048 Np Neptunium	62 150.36 Sm Samarium 94 244.064 Pu Plutonium	63 151.966 Europium 95 243.061 Americium	64 157.25 Gd Gadolinium 96 247.070 Cm Curium	65 158.925 Tb Terbium 97 247.070 Bk Berkelium	66 162.50 Dy Dysprosium 98 251.080 Cf Californium	67 164.930 HO Holmium 99 (254) ES Einsteinium	68 167.26 Er Erbium 100 257.095 Fm Fermium	69 168.934 Tmm Thulium 101 258.1 Md Mendelevium	70 173.04 Yb Ytterbium 102 259.101 Nobelium	71 174.967 Lu Lutetium 103 (262) L r Lawrencium
			Alka Met		Alkaline Earth		asic etal	Halog	en N	loble Ga	s Non	Metal	Rare E	arth	Semi Metal	Trar M	nsition letal

ที่มา : https://www.sciencenewsforstudents.org/article/scientists-say-periodic-table

5f

ที่มา : https://sites.google.com/site/williamsscienceclasses/chemistry/electrons