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Abstract

In this paper, we suggest and analyze some new sixteen-order iter-
ative methods by using Householder’s method free from second deriva-
tive for solving nonlinear equations. Here we use a new and different
technique for implementation of sixlteen—order derivative of the func-
tion. The efficiency index equals 166 =~ 1.587. Numerical examples of
the new methods are compared with other methods by exhibiting the
effectiveness of the method presented in this paper.

1 Introduction

A common problem in engineering, scientific computing and applied mathe-
matics, in general, is the problem of solving a nonlinear equation f(x) = 0.
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To find a zero of the non-linear equation, Newton’s method [14] is one of the
well known optimal methods using:

o f($n>
In+1 = Tp f/($n> (11)

There exists numerous modifications of the Newton’s method which im-
prove the convergence rate (see [1, 5, 7, 8, 9, 10, 12, 15, 16, 17] and refer-
ences therein). For the sake of completeness, we list some existing optimal
sixteenth-order convergent methods. In 2011, Geum and Kim [2] proposed a

biparametric family of optimally convergent sixteenth-order multipoint meth-
ods (GE1):

— f(xn)
Yn = f(zn)
()

f(zn)
Hy f(zn)
f(sn)

f/(

(1.2)

Sp = Zpn —

Tpit1 = Sp Wf - )7
n

14 Bun+(—9+5/28)u2

_ f(yn) _ f(zn) _ f(zn) —
where tn = 55,5, Un = 5,30 Wn = o) In =

= TR (B—2)unt(—4+5/2uZ

_ 142un+(240)wn - 14+2un+(24+0)vnwn
H - l—vntown ! Wf T 1—vp—2wp—tn+2(1+0)vpwn + G

one of the choices for G along with § =2 and ¢ = —2:
G = —1 [upw, (6 4 12u, + (24 — 118)u2 + udp, + 40)] + pow?, py = (115% —
665 + 136), p2 = (2un(0? — 20 — 9) — 40 — 6)

In the same year, Geum and Kim [3] presented a family of optimal
sixteenth-order multipoint methods (GE2)

— f(xn)
o = f(zn)
S f(yn)
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_ flyn) _ [f(zn) _ f(zn) _ [sn) _ _14+Bun+(=9+5/2B)up
where o AN U = ) W = ) I = TG B @2t - Ar8/20
_ 14+2unt+(2+0)ws o 142u,
Hf - l—vntown Wf - l—vni_2wn—tn + G
one of the choices for G along with § = 2 and 0 = —2: G = —6ulv, —

2yt wy, + 6wk + u, (202 + 40 + w, — 2w?)
In 2012, Thukral [13] presented a four-point derivative-free sixteenth-
order iterative methods (THU)

Yp = Tp — ————
flxn, yn
_ f(yn)
4y = 2 — 1) f(zn)
f[yn7 Zn] - f[xnu yn] _'_ f[xnu Zn]
" L f[ynv Zn]f(an)
i " f[yna an]f[znv an]7
_ f(zn) _ f(zn) _ () _ fm) _ flan) _ flan)
where uy = FE705, up = FS, Us = s Ua = fes Us = s Ue = fuy
¢ = flenwn] 1
Flynwa]” 1~ TH2uud) (1-ua)?

o= 14+uius— u1U3u4+U5+u6+u1U4+u2u3+3u1u4(u§—uﬁ)
B fl@n,yn]
In 2017, Rafiullah and Jabeen [11] proposed Sixteenth Order Iterative

Methods (RAF)

Y = f'(zn)
T = Yo — f(yn) _ f(yn)z(f/(xn) — f'(Yn)
" ! f'yn)  20f (@0 — f(yn)) ' (20)?
o — o [ ) (@ — yn) (@0 — 20) (Yn — 20))
! " _(f(z)n)(xn = Yn)(Tn = 220 + Yn) + FW) (@0 — 20)* = f(20) (Yn — 20)?
S (n

Tn41 = Up — de s

(1.5)

_ ) f(vn) f(vn) f(xn)(vn_yn)(vn_zn) f(yn)(vn_xn)(vn_zn)
Wf};er)e( df/U )( Un _Z'SL Un—Yn + Un—2n (xn_vn)(xn_yn)(xn_Zn) (U'n_yn)(xn_yn)(yn_zn) +
Zn )(Un—Tn)(Un—Yn

(Zn Un)(zn -Tn)(zn yn
Our proposed iterative method was developed from a concept of Myla-

palli, Palli and Vatti [10] and Householders method [4]. The proposed algo-
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rithms are applied to solve some test examples in order to assess its validity
and accuracy.

2 Iterative Methods

Consider the nonlinear equation
f(z) =0, (2.6)
with = as a simple root, x,, an initial guess and ¢ is the error. Thus,
T =2, +e€. (2.7)

Using Taylor’s formula, equation (2.6) can be written in the form of the
following coupled system:

f(x) = flxn) + (x — xn) f(2n) + %f”(xn) +...
:f@@+f@@&+ﬂgw§+“. (2.8)
From equation (2.6) and (2.8), we get
[ (@n)e 4+ 2f (xn)e + 2f (z,) = 0. (2.9)

We solve for € to obtain

__ —2f'(wa) & V2P (@a))? = 87 (wn) ()

2.1
2f"(n) (2.10)
On Substituting by 2,41 in (2.7) and from (2.10), we get
2f ()
Tt = T ) 1+ VI = 2) (2.11)
_ flan)f" (n)
Where Pn = W

Rewriting the above equation with Newton’s method as a predictor gives
us a new algorithm as follows:
Algorithm 2.1 For a given xy, compute approximate solutions x, 1 by the
iterative schemes:

— o f(zn)
i f'(an)
o 2/ (yn)
" fya) L+ VT 2p)

(2.12)
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where p,, = 7]((%325,1)(2@/”)‘

In the next method, a step of iteration was added by Householders method,
which has cubic convergence[4]. Thus the new iteration method is obtained
as Algorithm 2.2:

Algorithm 2.2 For a given xy, compute approximate solutions x,; by the
iterative schemes:

o= Y — 2f(yn)
T Flye) (T4 VT = 2p,)
. f(zn) f(zn) " (20)
Tn+1l = Zn — —
f'(zn) 21" (2n)

In order to implement this method, one has to find the second derivative of
this function, which may create some problems. To overcome this drawback,
we use a new and different technique to reduce the second derivative of the
function to the first derivative. This idea plays a significant role in developing
some new iterative methods free from second derivatives. To be more precise,
we consider

) = —2— (2 + £) =3

(2.13)

) (2.14)

n - 4n Yn — Tn
P = do = 2 (2 o)+ )~ 3L L) o)

We suggest the following new iterative method for solving the nonlinear
equation and this is the new motivation of higher-order.
Algorithm 2.3 For a given xy, compute approximate solutions x,; by the
iterative schemes:

y 2f(yn)
f,(yn) (1 + Vv I 2pn)
. f(zn) f(zn)d,
Tn4+1 = Zn f/(2n> 2f/3(zn) .
Algorithm 2.3 is a new three-step iteration method (TSI) with the six-

teenth order convergence. Thus, Algorithm 2.3 efficiency index is 166 ~
1.5874

Zn =

(2.16)
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3 Convergence Analysis

In this section, we examine a convergence analysis of the newly proposed
algorithm in the form of the following theorem:

Theorem 3.1. Suppose that o is a root of the equation f(x) = 0. If f(x) is
sufficiently smooth in the neighborhood of «, then the order of convergence
of Algorithm 2.3 is sixteen.

Proof. To analyze the convergence of Algorithm 2.3, suppose that « is a root
of the equation f(x) = 0 and e, is the error at the nth iteration. Then
e, = xn, — a.By using a Taylor series expansion, we have

f(xn) = fl(Q)[en + cae® + czed + caed + cse® + ceeb +crel +..]  (3.17)

f'(z,) = f/(Q)[1+2c2e, +3cse? +4eged +5eser +6egel +Terel +. ., (3.18)
f

(n) (a)
where ¢,, = ()
With the help of equations ((3.17)) and (3.18), we get
}c/((zn)) =e, — cpea — (2c5 — 2c3)ed — (3cy — Tepes + 4cd)elt

+ 2(5cacy + 4cy — 10c5c3 + 3¢5 — 2¢5)e’ + ... (3.19)

Yn =0+ o€ + 2(c3 — c3)ed — (3cq — Teaes + 4c3)el
+ (=8¢ + 20c2cs — 10cocy — 6¢2 + 4es)ed + . .. (3.20)

f(yn) :f,(a)[CQQi + 2(c3 — cg)ei + (50% — Teocs + 304)ei
+ (—12¢5 + 24c5c3 — 10cycy — 65 + 4es)e® + .. ] (3.21)

F () =F (@)1 + 2c3€% + 4(csea — 3)e2 + (6eacs — 11escs + 8ci)ed
(

+ (=165 + 28c5c3 — 20c5cq + 8cacs el + .. 3.22)
Using equations (3.17)-(3.22), we get

z=a+ (—ciez + cieq)el + (6cyc3 — 6y — 6cacs + 2¢5c5 + deacsey)er + . ..
(3.23)
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f(zn) =f(a)[(—czes + chea)en+
(6c5c3 — 6cscy — 6cacs + 2¢5cs + deaczey el .. ] (3.24)

f'(z0) =f'(@)[1 + (—2c5c3 + 2c3c4) el +
(12¢5c3 — 12¢5¢4 — 12633 + 4ces + 8cacsea)el + .. ] (3.25)
Using equations (3.23)-(3.25), we get
b =+ (e — 2o+ A B O, (326)
which implies that
ent1 = (5cies — 2chesc? + Sci) e + O(el". (3.27)

The above equation shows that the order of convergence of Algorithm 2.4
is sixteen. O

4 Numerical Experiments

In this section, we compare the number of iterations in obtaining an approx-
imate root of our proposed methods with the other methods that have an
equal order of convergence. Algorithm 2.3 (TSI) sixteenth order convergence
compare with Geum and Kim (GE1) [2], Geum and Kim (GE2)[3], Thukral
(THU) [13] and Rafiullah and Jabeen (RAF) [11]. We consider the following

numerical examples:

fi(z) = sin(z) + cos(x) + x, xg = —1.0

folx) = we” — sin?(x) + 3cos(x) + 5, 1y = —1.2
fs(z) = (x+2)e* =1, g = —0.9
fa(z) = 2® — 22° — 5, x5 = 2.0

f5(z) = cos(z) — x, mg = 1.7

fo(z) = we” — sin?(z) 4+ 3cos(x) + 5, 29 = —1.0
fr(x) =sin*(z) —2® + 1, my = —2.5

fs(z) = (x = 1)e™", xo = 0.25.

All examples were done using Maple with 3500 significant digits. The
comparison was under the condition that the program will stop when |z, —
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T, 1| < e and |f(x,)] < e, where e = 10729, Table 1 represents the number
of iterations N, the approximate root x,, the magnitude |f(z)| of f(z) at
the final estimate x,.1, the difference between two consecutive approxima-
tions x,,1 — x, of the equation and CPU time.

Table 1 Convergence for sample test functions fi(z) — fs(x).

Method N Ty |f(xz)]  |xn — 4| time
fl (I)v To = —1
GE1 7 -0.456624704567630824437697457  4.57e-214  3.94e-107  0.042
GE2 2 -0.456624704567630824437697457  1.36e-236 4.51e-17 0.010
THU 5! -0.456624704567630824437697457  5.68e-516 2.10e-129  0.038
RAF 2 -0.456624704567630824437697457  3.50e-320 9.31e-23  0.012
TSI 2 -0.456624704567630824437697457  2.87e-385 6.58e-24  0.009
fg(ﬂ?), Ty — —1.2
GE1 7 -1.207647827130918927009416758  1.49e-244 1.95e-123  0.057
GE2 2 -1.207647827130918927009416758  2.32e-338 2.72e-25 0.018
THU 4 -1.207647827130918927009416758  7.44e-266 3.82e-68  0.045
RAF 2 -1.207647827130918927009416758  7.66e-366 3.77e-27  0.020
TSI 2 -1.207647827130918927009416758  1.68e-521 1.98e-33  0.011
fg(l’), o = —-0.9
GE1 div - - - -
GE2 27  -0.442854401002388583141327999 5.30e-1078 1.08e-77 0.278
THU 8 -0.442854401002388583141327999  8.04e-238 3.50e-60  0.058
RAF 3 -0.442854401002388583141327999 1.60e-1464  4.96e-105  0.020
TSI 3 -0.442854401002388583141327999 4.95e-2216  5.90e-139  0.014
f4(l’), T =2
GE1 div - - - -
GE2 165 2.6906474480286137503507888826  1.02e-419 1.09e-30  0.472
THU 6  2.6906474480286137503507888826  2.43e-678  8.56e-171  0.021
RAF 4 2.6906474480286137503507888826  1.09e-812 2.58e-58  0.008
TSI 3 2.6906474480286137503507888826 2.69e-1897  7.58e-106  0.004
f5(l’), o = 1.7
GE1 9 0.7390851332151606416553120876  1.29e-381  5.22e-191  0.192
GE2 3 0.7390851332151606416553120876 1.79e-1969  4.84e-141  0.060
THU 5 0.7390851332151606416553120876  1.65e-558  8.79e-140  0.118
RAF 3 0.7390851332151606416553120876 5.99e-2574  5.63e-184  0.086
TSI 2 0.7390851332151606416553120876  1.99e-242 3.46e-15 0.042

f6(1'), To — —10
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GE1 div
GE2 div
THU 6
RAF div
TSI 3
f7(£13'), Ty — —2.5
GE1 17
GE2 3
THU 6
RAF 3
TSI 2
fg(l’), o = 0.25
GE1 div
GE2 3
THU 6
RAF 3
TSI 3

-1.40449164821534122603508681
-1.40449164821534122603508681
-1.40449164821534122603508681
-1.40449164821534122603508681
-1.40449164821534122603508681

1.000000000000000000000000000
0.999999999999999999999999999
0.999999999999999999999999999
0.999999999999999999999999999

-1.207647827130918927009416758  2.16e-322

-1.207647827130918927009416758  1.81e-2475

4.58e-207

2.91e-856

4.07e-582
2.36e-1116
2.08e-1755

1.73e-791

1.17e-680
1.68e-1248
6.71e-1409
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2.81e-82

1.49e-155

4.28e-104
5.60e-62
1.97e-146
2.62e-80

3.10e-110

2.52e-57
1.03e-170
9.73e-90
1.33e-88

0.373
0.219

0.534
0.079
0.159
0.107
0.075

0.025
0.073
0.028
0.017

5 Conclusion

In this work, we have proposed sixteenth order iterative methods. The con-
vergence orders of the suggested methods were proved and the efficiency was
also calculated. With the help of some test problems, a comparison of the
obtained results with the existing methods such as the Geum and Kim [2, 3],
Thukral [13] and Rafiullah and Jabeen [11] was also given and it was observed

that the new methods are more efficient than the existing methods.
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