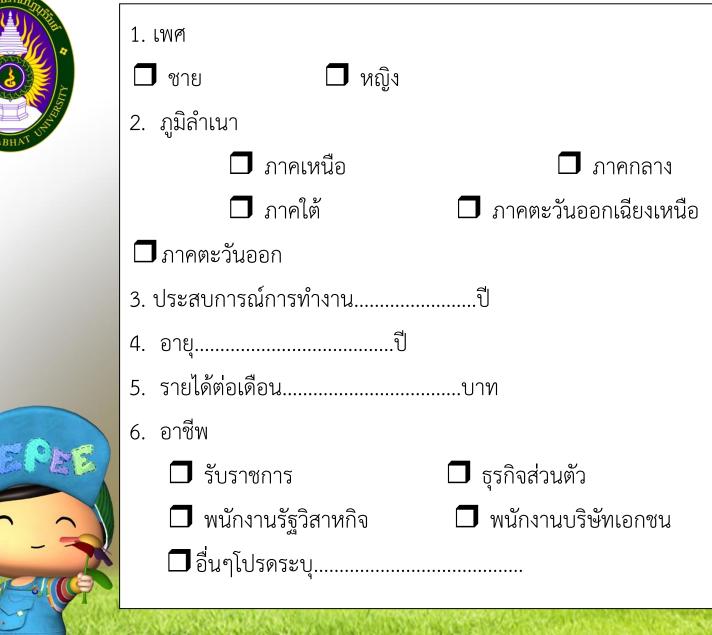


บทที่ 8 การวิเคราะห์ข้อมูลสถิติพื้นฐานด้วยโปรแกรม PSPP

www.pptback.con

ในบทนี้จะกล่าวถึงเกี่ยวกับการใช้โปรแกรมสำเร็จรูปทางสถิติด้วยโปรแกรม PSPP ซึ่งเป็นโปรแกรมโอเพนซอร์ส (open source) ด้วยการสนับสนุนจากสำนักงานส่งเสริม อุตสาหกรรมซอฟต์แวร์แห่งชาติ (องค์การมหาชน) ที่ส่งเสริมให้คนไทยใช้โปรแกรมโอเพนซอร์ส มาช่วยในการวิเคราะห์ข้อมูลโดยเฉพาะข้อมูลที่เป็นข้อมูลเชิงปริมาณ ซึ่งวิธีการวิเคราะห์ข้อมูล ด้วยวิธีการทางสถิติจะค่อนข้างยุ่งยากและซับซ้อน โดยจะแบ่งออกเป็นในส่วนของสถิติพรรณนา และสถิติอนุมาน ซึ่งจะอธิบายเฉพาะในส่วนของสถิติที่มีการนำไปใช้เสมอ ชึ่งการอธิบายจะเน้นที่การอ่านและการแปลความหมายผลลัพธ์ที่ได้จากการ ใช้โปรแกรม PSPP เป็นสำคัญ


8.1 สถิติพรรณนา

จะใช้ในการบรรยายลักษณะของข้อมูล หรือการวิเคราะห์ข้อมูลเบื้องต้น มีสถิติสำคัญให้เลือกใช้ ดังนี้

- การหาค่าความถี่ และค่าร้อยละ
- การวัดแนวโน้มเข้าสู่ส่วนกลาง ได้แก่ ค่าเฉลี่ย มัธยฐาน และฐานนิยม
 การวัดการกระจาย ได้แก่ พิสัย ส่วนเบี่ยงเบนมาตรฐาน และค่าความแปรปรวน
 เป็นต้น
- BOx Plot
- **EPAS**-สถิติชีพและอัตราชีพ

แต่ในหัวข้อนี้จะขอกล่าวเพียง การหาค่าความถี่ และค่าร้อยละ การวัด แนวโน้มเข้าสู่ส่วนกลาง และการวัดการกระจาย โดยการวิเคราะห์ข้อมูลด้วย สถิติพรรณนามักจะวิเคราะห์จากแบบสอบถามในส่วนที่เป็นข้อมูลพื้นฐานหรือ ข้อมูลทั่วไป เช่น จากตัวอย่างแบบสอบถาม

เก็บข้อมูลจากตัวอย่างจำนวน 25 ตัวอย่างได้ข้อมูลดังนี้

sex	path	experience	age	income	оссира
1	1	3	35	13,000	1
1	4	4	29	9,500	2
1	5	5	42	17,000	1
2	1	9	40	18,000	1
1	4	12	50	38,000	3
2	5	5	32	27,000	4
2	4	4	30	14,000	4
2	3	3	34	12,500	3
1	3	6	33	15,000	2
1	2	5	32	9,700	1
2	3	10	34	12,000	2
2	3	11	29	7,500	3
1	1	3	44	27,000	3
1	2	5	51	42,000	3
2	2	7	36	28,000	4
1	4	6	42	39,000	4
2	4	5	36	25,000	1
1	4	4	44	32,000	1
1	5	11	55	47,000	1
2	5	9	29	14,500	2
2	5	8	30	12,000	2
1.48	1	7	31	11,500	3
	2	6	28	13,000	2
2	4	5	47	23,000	3
A SAMANYA	5	3	50	45,000	I. I.

www.pptback.com

สร้างข้อมูลในตารางลงในโปรแกรมสำเร็จรูป PSPP ตามขั้นตอนดังนี้

ขั้นตอนที่ 1 สร้างตัวแปรลงในโปรแกรมสำเร็จรูป PSPP โดยคลิกไปที่

หน้าต่าง Variable view ดังรูป

🧳 *[DataSet1] — PSPPIRE Data Editor

<u>File Edit View Data Transform Analyze Utilities Windows Help</u>

ariable	Name		Туре		Width	Decimals	Label		Value Labels	Missing Values	Columns	Align		Measure	Role	
1	sex		Numeric		8	0	เพศ		{1, ซาย}	 None	 8	Right	÷	Scale 🚦	Input	
2	path	_	Numeric		8	0	ภูมิสำเนา		{1, ภาคเหนือ}	 None	 8	Right	÷	Scale 🛛	Input	
3	experience		Numeric		8	0	ประสบการณ์การทำงาน		None	 None	 8	Right	÷	Scale 🛛	Input	_
4	age		Numeric		8	0	อายุ		None	 None	 8	Right	÷	Scale 🛛	Input	_
5	income	_	Numeric		8	0	รายได้		None	 None	 8	Right	÷	Scale 🛛	Input	
6	occupa		Numeric		8	0	อาชีพ		{1, รับราชการ}	 None	 8	Right	÷	Scale 🛛 🛛	Input	
7																
	\checkmark			/			\downarrow									
ซื	ื่อตัวแป	ร	ชนิเ	ลข	องตัว	แปร	ความหม	าย	ของตัวแปร							

	😂 *[DataSet1] — PSPPIRE Data Editor											
	<u>F</u> ile <u>E</u> d	lit <u>V</u> iew	<u>D</u> ata <u>T</u> ra	nsform <u>A</u> i	nalyze <u>U</u> t	ilities <u>W</u> in	dows <u>H</u> elj	p				
		₩ '	õ ä	Q	6		P 9					
	Case	sex	path	experien	age	income	occupa					
	1	1	1	3	35	1300	1					
	2	1	4	4	29	9500	2					
	3	1	5	5	42	17000	1					
	4	2	1	9	40	18000	1					
	5	1	4	12	50	38000	3					
	6	2	5	5	32	27000	4					
	7	2	4	4	30	14000	4					
1	8	2	3	3	34	12500	3					

9	1	3	6	33	15000	2	
10	1	2	5	32	97000	1	
11	2	3	10	34	12000	2	
12	2	3	11	29	75000	3	
13	1	1	3	44	27000	3	
14	1	2	5	51	42000	3	
15	2	2	7	36	28000	4	
16	1	4	6	42	39000	4	
17	2	4	5	36	25000	1	
18	1	4	4	44	32000	1	
19	1	5	11	55	47000	1	
20	2	5	9	29	14500	2	
21	2	5	8	30	12000	2	
22	1	1	7	31	11500	3	
23	1	2	6	28	13000	2	
24	2	4	5	47	23000	3	
25	1	5	3	50	45000	1	

www.pptback.com

<u>ขั้นตอนที่ 3</u> บันทึกข้อมูลโดยใช้ชื่อ file ว่า Sample 1

สำหรับการพิจารณาว่าควรใช้สถิติพรรณนาตัวใดในการนำเสนอข้อมูลต้อง พิจารณาที่มาตรวัดของข้อมูล ซึ่งในที่นี้จะพบว่า ตัวแปร เพศ ภูมิลำเนา และ อาชีพ อยู่ในมาตราการวัดแบบนามบัญญัติ (Norminal Scale) ดังนั้นควรเลือกใช้ ค่าความถี่และร้อยละในการวิเคราะห์ข้อมูล โดยใช้คำสั่งดังนี้

1. Click Analyze — Frequencies จะได้หน้าจอดังรูป

	👏 *[Dat	:aSet1] —	PSPPIRE D)ata Editoi	"			
	<u>File E</u> o	lit <u>V</u> iew	<u>D</u> ata <u>T</u> ra	insform <u>A</u> i	nalyze <u>U</u> t	ilities <u>W</u> in	dows <u>H</u> el	ielp
		≱ ('	යි ම	Q	ô ô		P P	�
			[
	Case	sex	path	experien	age	income	occupa	
	1	1	1	3	35	13000	1	1
	2	1	4	4	29	9500	2	2
	3	1	5	5	42	17000	1	1
	4	2	1	9	40	18000	1	1
	5	1	4	12	50	38000		Frequencies
	6	2	5	5	32	27000	_	E wer
K	7	2	4	4	30	14000		<u>ย</u> ภูมิสำเนา
	8	2	3	3	34	12500		E ประสบการณ์การห่างาน Baste
	9	1	3	6	33	15000		E any Statistics:
	10	1	2	5	32	9700		E รายได้ ∠ancel E อาซีพ
	11	2	3	10	34	12000		Standard deviation
A A A A A A A A A A A A A A A A A A A	12	2	3	11	29	7500		Include missing values
	13	1	1	3	44	27000		Charts Frequency <u>Tables</u> <u>H</u> elp
ALL MARKED	14	1	2	5	51	42000		

 นำตัวแปร เพศ ภูมิลำเนา และอาชีพใส่ไว้ในช่อง Variable (ร) สำหรับในส่วนของ Statistics : ไม่ต้องเลือกค่าใดๆแต่ในโปรแกรมจะเลือก ค่าที่โปรแกรมคิดว่าจำเป็นบางค่ามาให้โดยอัตโนมัติให้คลิกออก จากนั้น

คลิก OK จะได้ผลลัพธ์ดังรูป

FREQUENCIES

FREQUENCIES /VARIABLES= sex path occupa /FORMAT=AVALUE TABLE /STATISTICS=NONE.

IMPL

Value Label	Value	Frequency	Percent	Valid Percent	Cum Percent	
ชาย	1	14	56.00	56.00	56.00	
หญิง 2		11	44.00	44.00	100.00	
Total		25	100.0	100.0		

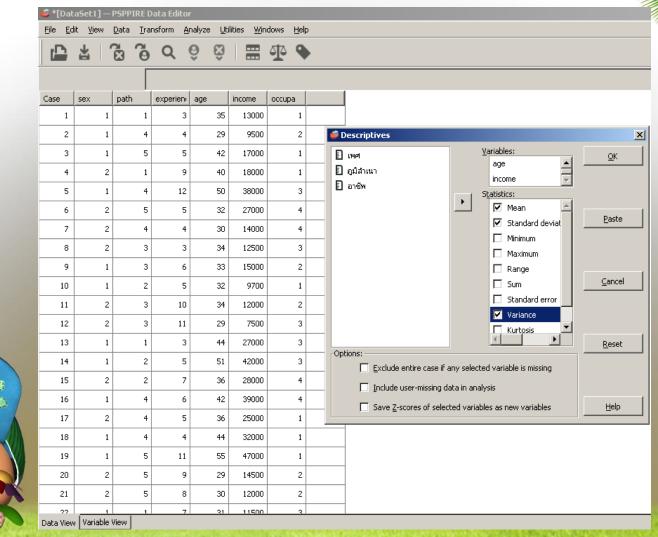
ຄູມີສຳເພາ

PERE

Alexandra (
Value Label	Value	Frequenc,	v Percer.	nt 👘 Valid Percer	nt Cum Percent				
ภาคเหนือ	1		4 16.0	0 16.0	0 16.00				
ภาคกลาง	2		4 16.0	0 16.0	0 32.00				
ภาคใต้	3		4 16.0	0 16.0	0 48.00				
ภาคตะวันออกเฉียงเหนือ	ı 4	:	7 28.00 28.00		76.00				
ภาคตะวันออก	5		5 24.0	0 24.0	0 100.00				
	Total	25	5 100.0	0 100.	0				
อาชีพ									
Value Label	Value	Frequency	Percent	Valid Percent	Cum Percent				
รับราชการ	1	8	32.00	32.00	32.00				

VAIDE LADEI	VAUUE	THEQUEINLY	FEILENL	VANDFEILENL	COMPETENC
รับราชการ	1	8	32.00	32.00	32.00
ธุรกิจส่วนตัว	2	6	24.00	24.00	56.00
พนักงานรัฐวิสาหกิจ	3	7	28.00	28.00	84.00
พนักงานบริษัทเอกชน	4	4	16.00	16.00	100.00
	Total	25	100.0	100.0	

จากตาราง Output สามารถแปลผลได้ดังนี้



- Frequency หมายถึง ค่าความถี่หรือจำนวนข้อมูลในแต่ละกลุ่ม
- Percent หมายถึง ค่าที่แสดงความถี่ที่นับได้ในรูปร้อยละ
- Valid Percent หมายถึง ค่าที่แสดงความถี่ที่นับได้ในรูปร้อยละ
 ไม่รวมค่า Missing
- Cum Percent หมายถึง ค่าร้อยละสะสม

เมื่อมองโดยภาพรวมสามารถสรุปผลได้ว่า ผู้ตอบแบบสอบถามส่วนใหญ่เป็นเพศชาย จำนวน 14 คน คิดเป็นร้อยละ 56.0 มีภูมิลำเนาอยู่ในภาคตะวันออกเฉียงเหนือ จำนวน 7 คน คิด เป็นร้อยละ 28.0 โดยส่วนใหญ่จะประกอบอาชีพรับราชการ จำนวน 8 คน คิด เป็นร้อยละ 32.0 สำหรับตัวแปร ประสบการณ์การทำงาน อายุ และรายได้ต่อ เดือน จะอยู่ในมาตราการวัดแบบอัตราส่วน (Ratio Scale) ดังนั้นควรเลือกใช้ การวัดแนวโน้มเข้าสู่ส่วนกลางโดยใช้ค่าเฉลี่ย และวัดการกระจายโดยใช้ค่า ส่วนเบี่ยงเบนมาตรฐาน โดยใช้คำสั่งดังนี้

1. Click Analyze	Frequencies	จะได้หน้าจส	อดังรูป
------------------	-------------	-------------	---------

2. นำตัวแปร ประสบการณ์การทำงาน อายุ และรายได้ต่อเดือน ใส่ไว้ในช่อง Variable (s) สำหรับในส่วนของ Statistics : ให้เลือกค่า

Mean , Standard deviation และค่า Variance จากนั้นคลิก

OK จะได้ผลลัพธ์ดังรูป

DESCRIPTIVES

DESCRIPTIVES /VARIABLES= experience age income /STATISTICS=MEAN STDDEV VARIANCE.

Valid cases = 25; cases with missing value(s) = 0.

Variable	N	Mean	Std Dev	Variance
ประสบการณ์การทำงาน	25	6.24	2.73	7.44
อายุ	25	37.72	8.16	66.63
รายได้	25	22088.00	12222.50	149389433.33

จากตาราง Output แปลผลได้ดังนี้

- N หมายถึง จำนวนข้อมูล
- Mean หมายถึง ค่าเฉลี่ย
- Std Dev หมายถึง ค่าเบี่ยงเบนมาตรฐาน
- Variance หมายถึง ค่าความแปรปรวน

สามารถสรุปได้ว่าผู้ตอบแบบสอบถามมีประสบการณ์การทำงานเฉลี่ย 6.24 ปี และมีค่าเบี่ยงเบนมาตรฐาน 2.73 ปี มีค่าความแปรปรวน 7.44 ปี² สำหรับอายุ เฉลี่ยคือ 37.72 ปี มีค่าเบี่ยงเบนมาตรฐานของอายุคือ 8.163 ปี มีค่า ความแปรปรวน 66.63 ปี² โดยรายได้เฉลี่ยจะอยู่ที่ 22,088.00 บาท มีค่า เบี่ยงเบนมาตรฐานของรายได้คือ 12,222.497 บาท และค่าความ แปรปรวน 149389433.33 บาท²

8.2 สถิติอนุมาน

เป็นการศึกษาสรุปลักษณะของประชากรโดยใช้ข้อมูลตัวอย่าง จัดเป็นการ วิเคราะห์ข้อมูลขั้นสูง ได้แก่ การประมาณค่า การทดสอบสมมติฐาน การ วิเคราะห์ถดถอยและสหสัมพันธ์ การวิเคราะห์ความแปรปรวน เป็นต้น โดยในบทนี้จะขอก<mark>ล่าวถึงเพียงแค่การประมาณค่าและ</mark>การทดสอบสมมติฐาน ของค่าเฉลี่ย 1 กลุ่ม การประมาณค่าและการทดสอบสมมติฐานของค่าเฉลี่ย 2 กลุ่ม การทดสอบสมติฐานเกี่ยวกับค่าเฉลี่ยมากกว่า 2 กลุ่ม การวิเคราะห์ ถุดถอยและสหสัมพันธ์เชิงเส้นอย่างง่าย และการวิเคราะห์ความแปรปรวน **EPE ส**ำแนกทางเดียว

8.2.1 การประมาณค่าและการทดสอบสมมติฐานของค่าเฉลี่ย 1 กลุ่ม

จากตัวอย่าง file Sample 1 หากต้องการทราบว่าประสบการณ์ ในการทำงานจะมากกว่า 5 ปีหรือไม่ โดยทดสอบที่ระดับนัยสำคัญ 0.01 สามารถทำตามขั้นตอนดังนี้

 $\frac{\dot{v}$ ั้นตอนที่ 1</u> กำหนดสมมติฐานเพื่อการทดสอบ H₀ : μ = 5 H₁ : μ > 5 $\frac{\dot{v}$ ั้นตอนที่ 2 กำหนดระดับนัยสำคัญ (α) = 0.01 $\frac{\dot{v}$ ั้นตอนที่ 3 วิเคราะห์ข้อมูลโดย 1. Click Analyze → Compare Mean → One sample T test

จะได้หน้าจอดังรูป

Image: Second state sta

 ในช่องของ Test Variable (s): ให้เลือกตัวแปร experience (ประสบการณ์การทำงาน) ซึ่งเป็นตัวแปรที่ต้องการทดสอบใส่ลงไป ส่วนใน ช่อง Test Value: ให้ใส่ค่าที่ต้องการทดสอบซึ่งในที่นี้คือ 5 ปี
 3. Click Options จะได้หน้าจอดังรูป

STUTIAUTURITY	🥌 One - Sample T T	est		×	
*	🗈 เพศ	Coptions	×	<u>o</u> k	
	🛿 ภูมิสำเนา 🗐 อายุ	Confidence Interval: 99 🛨 %	Continue	Paste	
	 อายุ รายได้ 	• Exclude cases <u>a</u> nalysis by analysis	⊆ancel	Cancel	
TAJABHAT	🛙 อาซีพ	C Exclude cases listwise		<u>R</u> eset	
				Help	
		Test <u>V</u> alue: 5		Options	

ในช่อง Confidence Interval ให้ใส่ระดับนัยสำคัญที่ต้องการทดสอบ ลงไป ในที่นี้ให้ใส่ 99%

4. Click Continue จากนั้น OK จะได้ผลลัพธ์ดังรูป

T-TEST

T-TEST /TESTVAL=5 /VARIABLES= experience /MISSING=ANALYSIS /CRITERIA=CIN(0.99).

One-Sample Statistics

	N	Mean	Std. Deviation	S.E. Mean
ประสบการณ์การทำงาน	25	6.24	2.73	.55

One-Sample Test

		Test Value = 5.000000							
					99% Confidence Interval of the Difference				
	t	ď	- Sig. (2-	tailed)	Mean Difference	Lower	Upper		
ประสบการณ์การทำงาน	2.27	24		.032	1.24	29	2.77		

จากตารางผลการวิเคราะห์ (Out put) สามารถแปลผลได้ดังนี้ ตารางแรกบอกให้ทราบว่ามีข้อมูลเกี่ยวกับประสบการณ์การ ทำงานที่นำมาวิเคราะห์ทั้งหมด 25 case โดยมีประสบการณ์การทำงานเฉลี่ย 6.24 ปี มีค่าเบี่ยงเบนมาตรฐานเป็น 2.73 และมีค่าเบี่ยงเบนของความ คลาดเคลื่อนเฉลี่ยเป็น 0.55 ตารางที่สองเป็นการสรุปผลสมมติฐานที่กำหนดไว้ที่ระดับนัยสำคัญ 0.01 โดย

ที่สมมติฐานคือ

 H_0 : $\mu = 5$

 $H_1 : \mu > 5$ ซึ่งจากตารางจะได้ว่าค่า t = 2.27 ซึ่งต้องไปเปิดตารางสถิติ t ้เปรียบเทียบ แต่เนื่องจากใน Output บอกค่า Sig มาด้วย ดังนั้นจะใช้ค่า Sig ในการสรุปผล โดยที่ถ้าค่า sig มากกว่าระดับนัยสำคัญจะยอมรับ สมมติฐาน H_o ในทางกลับกันถ้าค่า sig น้อยกว่าระดับนัยสำคัญจะปฏิเสธ สมมติฐาน H_o ซึ่งจาก Output มีค่า Sig (2 – tailed) เป็น 0.032 แต่ เนื่องจากการทดสอบ

สมมติฐานเป็นแบบข้างเดียวทางขวา จึงต้องใช้ค่า Sig (2 – tailed) หาร 2 จะได้ค่า sig เท่ากับ $\frac{0.032}{2} = 0.016$ ซึ่งมีค่ามากกว่าระดับนัยสำคัญ 0.01 จึงยอมรับสมมติฐาน H_o นั่นคือ ประสบการณ์ในการทำงานไม่มากกว่า 5 ปี และ

จากตารางจะสามารถประมาณค่าเฉลี่ยของประสบการณ์การทำงานได้ด้วยว่าอยู่ในช่วง - 0.29+5 = 4.71 ถึง 2.77 + 5 = 7.77 ปี (4.71,7.77 ปี)

8.2.2 การประมาณค่าและการทดสอบสมมติฐานของค่าเฉลี่ย 2 กลุ่ม แบ่งออกเป็น 2 กรณีคือ

8.2.2.1 กรณีที่ประชากร 2 กลุ่มไม่เป็นอิสระต่อกัน (มีความสัมพันธ์กัน) ในกรณีที่ประชากร 2 กลุ่มไม่เป็นอิสระต่อกัน เช่น ทดสอบ การทำงานของคู่แฝด การทดลองยาลดความอ้วน ประสิทธิภาพการใช้ งานก่อน และหลังการอบรมการใช้ จะสังเกตเห็นว่าประชากรเป็น ประชากรไม่เป็นอิสระต่อกัน เราเรียกข้อมูลลักษณะนี้ว่าเป็นข้อมูลคู่ (pair data)

จะมีการแจกแจงแบบ t ด้วยองศาความเป็นอิสระ n – 1

ตัวสถิติทดสอบคือ $t = \frac{\overline{D} - \mu_D}{\frac{S_D}{\sqrt{-1}}}$

ตัวอย่าง ทดสอบความสามารถของนักศึกษาคณะวิทยาศาสตร์ในการใช้อุปกรณ์ใน ห้องปฏิบัติการเคมีก่อนและหลังการอบรมได้เวลาในการทำ Lab ดังนี้

คนที่	เวลาก่อนอบรม	เวลาหลังอบรม		
1	55	50		
2	46	42		
3	78	70		
4	61	63		
5	52	58		
6	45	35		
76.094	47	46		

คนที่	เวลาก่อนอบรม	เวลาหลังอบรม
8	57	52
9	71	60
10	58	49

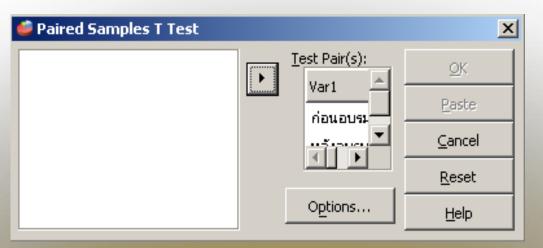
อยากทราบเมื่อนักศึกษาผ่านการอบรมจะใช้เวลาในการทำ Lab น้อยลงกว่าเดิม หรือไม่ ที่ระดับนัยสำคัญ 0.05

ขั้นตอนการทดสอบมีดังนี้

EPEE

 $\frac{\tilde{\tilde{vu}} \mu_{D}}{\tilde{vu}} = 0$ $H_{1}: \mu_{D} = 0$ $\frac{\tilde{vu}}{\tilde{vu}} = 0$ $H_{1}: \mu_{D} > 0$ $\frac{\tilde{vu}}{\tilde{vu}} = 0$ $\frac{\tilde{vu}}{\tilde{vu}} = 0$

PEE


<u>ขั้นตอนที่ 3</u> วิเคราะห์ข้อมูลโดยใช้คำสั่ง Pair T test โดยใช้ โปรแกรมสำเร็จรูปทางสถิติ PSPP ดังนี้

1. สร้างข้อมูลในตารางลงในโปรแกรมสำเร็จรูป PSPP บันทึกข้อมูลจะได้ ดังรูป

	ё *[Dat	aSet1] — PSI	PPIRE Data Ec	litor			
	<u>F</u> ile <u>E</u> d	it <u>V</u> iew <u>D</u> al	ta <u>T</u> ransform	<u>A</u> nalyze	<u>U</u> tilities	<u>W</u> indows	<u>H</u> elp
		1	~ 0	ô ĉ	3	e Te	•
	Case	ก่อนอบรม	หลังอบรม				
	1	55	50				
	2	46	42		1		
	3	78	70				
	4	61	63		1		
	5	52	58		1		
	6	45	35		1		
	7	47	46		1		
	8	57	52				
	9	71	60]		
	10	58	49				
	11]		
200	100000000	CONTRACTOR OF CASE	ALC: NO DECK OF A DECK OF	A LOUIS M	A REAL PROPERTY OF	1.0.0	

Click Analyze → Compare Mean → Paired sample T
 test จะได้หน้าจอดังรูป

น าตัวแปรก่อนการอบรมและหลังอบรมใส่ไว้ที่ช่อง Test Pair(s)
 จากนั้น Click options... จะได้ดังรูป

🗳 Paired Samples T Test	×	
Var1	;): 	
🥌 Options	×	
Confidence Interval: 🧾 🛨 % Missing Values	Continue	
• Exclude cases <u>a</u> nalysis by analysis	Cancel	
C Exclude cases listwise		

 4. ในช่อง Confidence Interval ให้ใส่ 95% เนื่องจากโจทย์กำหนด ระดับนัยสำคัญเป็น 0.05

5. Click Continue จากนั้น OK จะได้ผลลัพธ์ดังรูป

T-TEST

T-TEST PAIRS = ก่อนอบรม WITH หลังอบรม (PAIRED) /MISSING=ANALYSIS

/CRITERIA=CIN(0.95).

Paired Sample Statistics

		Mean	N	Std. Deviation	S.E. Mean
Pair 1	ก่อนอบรม	57.00	10	10.79	3.41
	หลังอบรม	52.50	10	10.44	3.30

Paired Samples Correlations

		N	Correlation	Sig,
Pair 1	ก่อนอบรม & หลังอบรม	10	.87	.001

Paired Samples Test

PEE

						95% Confidence Interval of the Difference				
			Mean	Std. Deviation	Std. Error Mean	Lower	Upper	t	ď	Sig. (2-tailed)
Pa	air 1	ก่อนอบรม - หลังอบรม	4.50	5.48	1.73	.58	8.42	2.60	9	.029

จากตารางการวิเคราะห์จะได้ค่า p-value หรือค่า Sig = $\frac{0.029}{2}$ = 0.0145 < 0.05 ดังนั้นจะ ปฏิเสธ H₀ สรุปว่าเมื่อนักศึกษาผ่านการอบรมจะใช้เวลา ในการทำ Lab น้อยลงกว่าเดิมที่ระดับนัยสำคัญ 0.05 และ ผลต่างของ เวลาที่ใช้ในการทำ Lab ก่อนและหลังการอบรมมีค่าอยู่ระหว่าง 0.58 และ 8.42 ด้วยความเชื่อมั่น 95 %

8.2.2.2 กรณีที่ประชากร 2 กลุ่มเป็นอิสระต่อกัน (ไม่มีความสัมพันธ์กัน

เป็นการทดสอบผลต่างระหว่างค่าเฉลี่ยของลักษณะที่สนใจของ 2 ประชากรว่าแตกต่างกันหรือไม่ หรือเป็นการทดสอบว่าค่าเฉลี่ยของ ประชากรที่ 1 มากกว่าประชากรที่ 2 หรือไม่ เช่น ต้องการทดสอบ รายได้ของเพศชายกับเพศหญิงว่าแตกต่างกันหรือไม่ สมมติฐานการวิจัยจะ กำหนดได้ดังนี้

 $H_0: \mu_1 = \mu_2$ หมายถึง รายได้เฉลี่ยเท่ากันหรือไม่แตกต่างกัน $H_1: \mu_1 \neq \mu_2$ หมายถึง รายได้เฉลี่ยแตกต่างกัน หรือ $H_1: \mu_1 > \mu_2$ หรือ $H_1: \mu_1 < \mu_2$

ตัวอย่าง ฝ่ายวิจัยต้องการทดสอบว่า เวลานอนของนักศึกษาชายและหญิงคณะ

วิทยาศาสตร์ แตกต่างกันหรือไม่ โดยการแจกแจงของเวลานอนมีการแจกแจงปกติ

สุ่มตัวอย่างนักศึกษาคณะวิทยาศาสตร์ บันทึกเวลานอนเป็นชั่วโมง/วัน ดังนี้

	ชาย					หญิง		
7.0	8.0	4.0	8.0	8.0	8.0	7.0	6.0	7.5
5.5	7.0	7.0	5.0	7.0	9.0	8.0	7.5	7.0
9.0	6.0	6.0	6.5	8.5	6.5	7.0	6.0	8.5
6.5	10.0	7.0	9.0	6.0	8.0	6.0	7.5	9.5
6.0	7.0	7.5	7.0	6.0	7.0	7.5	8.0	
7.0	6.0	7.0	5.5	8.0	7.0	8.0	9.0	
7.5	6.5	8.0	6.5	6.5	8.0	8.0	5.0	
8.0	7.0	8.0	6.0	7.0	5.5	6.0	8.0	
7.0	7.0	4.5	8.5	7.0	8.0	8.5	7.0	
6.0	5.0	7.0	8.0	6.0	9.0	8.0	7.0	
6.0	6.0	6.0		7.5	6.0	7.5	8.0	

จงทดสอบสมมติฐานว่าเวลานอนของนักศึกษาชายและหญิงคณะวิทยาศาสตร์ แตกต่างกันหรือไม่ พร้อมทั้งประมาณค่าผลต่างของเวลานอนของนักศึกษาชาย และหญิงคณะวิทยาศาสตร์ โดยใช้ระดับนัยสำคัญ 0.05 งงงงะคะประเทท

กำหนดให้ $\mu_{_1}$ แทนเวลานอนเฉลี่ยของนักศึกษาชายคณะวิทยาศาสตร์ $\mu_{_2}$ แทนเวลานอนเฉลี่ยของนักศึกษาหญิงคณะวิทยาศาสตร์

ขั้นตอนการทดสอบสมมติฐาน

<u>ขั้นตอนที่ 1</u> กำหนดสมมติฐานเพื่อการทดสอบ $H_0: \mu_1 = \mu_2$ $H_1: \mu_1 \neq \mu_2$ v<u>ขั้นตอนที่ 2</u> กำหนดระดับนัยสำคัญ (α) = 0.05 <u>ชั้นตอนที่ 3</u> วิเคราะห์ข้อมูลโดยใช้คำสั่ง Independent - Sample T test

สร้างข้อมูลในตารางลงในโปรแกรมสำเร็จรูป PSPP บันทึก 1.

ข้อมูลโดยใช้ชื่อ file ว่า Sample 3 ดังรูป

🗳 sample3.sav [DataSet1] — PSPPIRE Data Editor

Edit View Data Transform Analyze Utilities Windows Help File

ē. ଞ = 47 Q

22 : เวลาที่	ี่ใช้ในการนอ	nu	7.0	
Case	เพศ	เวลาที่ใช้	ในการนอน	
1	1		7.0	
2	1		5.5	
3	1		9.0	
4	1		6.5	
5	1		6.0	
6	1		7.0	
7	1		7.5	
8	1		7.0	
9	1		6.0	
10	1		6.0	
11	1		10.0	
12	1		7.0	
13	1		6.0	
14	1		6.5	
15	1		7.0	
16	1		7.0	
17	1		5.0	
18	1		6.0	
19	1		4.0	
20	1		7.0	

E PEE

🍃 sample3.sav [DataSet2] — PSPPIRE Data Editor 👘

Case	เทศ	เวลาที่ใช้	
71	۷	0.0	
72	2	8.0	
73	2	6.0	
74	2	8.5	
75	2	8.0	
76	2	7.5	
77	2	6.0	
78	2	7.5	
79	2	6.0	
80	2	7.5	
81	2	8.0	
82	2	9.0	
83	2	5.0	
84	2	8.0	
85	2	7.0	
86	2	7.0	
87	2	8.0	
88	2	7.5	
89	2	7.0	
90	2	8.5	
91	2	9.5	

Click Analyze → Compare Mean → Independent - Sample T test จะได้หน้าจอดังรูป

🗳 Independent-Samples T Test					
E we	<u>T</u> est Variable(s): เวลาที่ใช้ในการนอน	<u></u> K			
	·	Paste			
	Grouping Variable:	Cancel			
		<u>R</u> eset			
	Define Groups Options	Help			

3. นำตัวแปรเวลาที่ใช้ในการนอนใส่ไว้ที่ช่อง Test Variable(s): และตัว แปรเพศใส่ไว้ที่ช่อง Grouping Variable: จากนั้น Click Define Groups... จะได้ดังรูป

E PEE

🗳 Independent-Samples T T	est	×
E we	Test Variable(s): เวลาที่ใช้ในการนอน 	OK Paste Cancel
		Reset
	Define Groups Options	Help
🥌 Define Groups	>	٢
Use specified values:	Continue	
Group <u>1</u> value: ชาย	•	
Group <u>2</u> value: หญิง	<u>Cancel</u>	
O ⊆ut point:	- <u>H</u> elp	

4. ใน Group1 value : ใส่ชาย และใน Group1 value : ใส่หญิง จากนั้น Click Continue แล้ว OK จะได้ผลลัพธ์ดังรูป

T-TEST

T-TEST /VARIABLES= เวลาที่ใช้ในการแอน /GROUPS=เพศ(1,2) /MISSING=ANALYSIS /CRITERIA=CIN(0.95).

Group Statistics

	i MAT	N	Mean	Std. Deviation	S.E. Mean
เวลาที่ใช้ในการนอน	ซาย	43	6.81	1.22	.19
	หญิง	48	7.34	1.02	.15

Independent Samples Test

Levene's Test for Equality of Variances				t-test for Equality of Means						
									95% Confidence Inte	rval of the Difference
		F	Sig,	t	ď	Sig. (2-tailed)	Mean Difference	Std. Error Difference	Lower	Upper
เวลาที่ใช้ในการนอน	Equal variances assumed	.43	.512	-2.26	89.00	.026	53	.23	-,99	06
	Equal variances not assumed			-2.24	82.28	.028	53	.24	-1.00	06

<u>ความหมายของผลลัพธ์ในตาราง</u>

อธิบายได้เป็น 2 ขั้นตอน ดังนี้

<u>ขั้นที่ 1</u> ต้องตรวจสอบว่าค่าความแปรปรวนของประชากรทั้ง 2 เท่ากัน หรือไม่ โดยกำหนดสมมติฐานการทดสอบดังนี้

- สถิติที่ใช้ทดสอบใช้ F โดยดูได้จาก Column ของ Levene's Test for Equality of Variances เนื่องจากในที่นี้เป็นการทดสอบ 2 ด้านจึงเปรียบเทียบ Sig. กับค่า lpha ที่กำหนด ในตัวอย่างนี้ Sig. = 0.512 ซึ่งมากกว่า 0.05 จึงยอมรับ H $_{
m o}$ ้นั่นคือ เวลานอนของนักศึกษาชายและนักศึกษาหญิงมีความแปรปรวนไม่แตกต่างกัน

 $H_0: \sigma_1^2 = \sigma_2^2$

 $H_1: \sigma_1^2 \neq \sigma_2^2$

้<u>ขั้นที่ 2</u> การทดสอบสมมติฐานเปรียบเทียบเวลานอนของนักศึกษาชายและ นักศึกษาหญิง

🔪 - จากขั้นที่ 1 พบว่า ค่าความแปรปรวนของ 2 กลุ่มตัวอย่างไม่แตกต่างกัน ดังนั้นจะใช้ค่าสถิติทดสอบ t ในส่วน Equal Variances Assumed ซึ่งจะ ได้ค่า t จากตารางผลลัพธ์เท่ากับ -2.26 นำไปเปรียบเทียบกับค่า t ที่เปิด จากตาราง

- ค่า Sig (2-tailed) เท่ากับ 0.026 สรุปผลการทดสอบเปรียบเทียบกับค่า α = 0.05 โดยมีค่าน้อยกว่า α = 0.05 ดังนั้นจะปฏิเสธสมมติฐาน H₀
การทดสอบมีนัยสำคัญ นั่นคือเวลานอนเฉลี่ยของนักศึกษาชายและนักศึกษา
หญิงคณะวิทยาศาสตร์แตกต่างกัน

Mean Difference หมายถึง ผลต่างของรายได้เฉลี่ยของผู้จัดการชายและหญิง $(\overline{x}_1 - \overline{x}_2) = (6.814 - 7.344) = -0.53$ Std. Error Difference หมายถึง $\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} = 0.23$ - 95% Confidence Interval of the Mean หมายถึง ค่าประมาณแบบช่วงของ $\mu_1 - \mu_2$ ที่ระดับความเชื่อมั่น 95% โดยมีค่าเท่ากับ 0.99 < $\mu_1 - \mu_2$ < -0.06 นั่นคือ ผลต่างระหว่างเวลานอนเฉลี่ย ของชายและนักศึกษาหญิงจะอยู่ในช่วง 0.99 ชั่วโมง ถึง -0.06 ชั่วโมง

8.2.3 การทดสอบสมติฐานเกี่ยวกับค่าเฉลี่ยมากกว่า 2 กลุ่ม (การวิเคราะห์ความแปรปรวน) ในบทนี้จะขอกล่าวถึงเพียงแค่การวิเคราะห์ความแปรปรวนจำแนกทาง เดียว หรือOne-way ANOVA ซึ่งเป็นวิธีการทดสอบเพื่อวิเคราะห์ความสัมพันธ์ ระหว่างตัวแปรอิสระหรือตัวแปรต้นตัวเดียวกับตัวแปรตามเพียงตัวเดียวโดยที่ตัว แปรอิสระหรือตัวแปรต้นอาจมีลักษณะเป็นตัวแปรเชิงคุณภาพ (Qualitative PEE Variable) ที่จำแนกออกเป็นระดับหรือประเภทต่าง ๆ เช่น เก่ง-ปานกลาง-อ่อน ดีมาก-ดี-พอใช้-แย่ เป็นต้น ส่วนตัวแปรตามอาจมีลักษณะเป็นตัวแปรเชิงปริมาณ Quantitative Variable) เพื่อศึกษาความสัมพันธ์ของตัวแปรอิสระหรือตัวแปร ต้นว่าจะส่งผลอย่างไรกับตัวแปรตาม ตามสมมติฐานการวิจัยที่กำหนดไว้

ตัวอย่าง . จากการสอบถามร้านที่จำหน่ายเครื่องคอมพิวเตอร์
 4 ยี่ห้อ โดยสอบถามมายี่ห้อละ 6 ร้าน เพื่อเปรียบเทียบจำนวนที่ขายได้ของ
 เครื่องคอมพิวเตอร์ทั้ง 4 ยี่ห้อว่ามีความแตกต่างกันหรือไม่ได้ข้อมูลดังตาราง

ยี่ห้อคอมพิวเตอร์							
I.	I	Ш	IV				
78	64	55	75				
91	72	66	93				
97	68	49	78				
82	77	64	71				
85	56	70	63				
77	95	68	76				

SEE

จงทดสอบว่าจำนวนที่ขายได้ของเครื่องคอมพิวเตอร์ทั้ง 4 ยี่ห้อแตกต่าง กันหรือไม่ โดยทดสอบที่ระดับนัยสำคัญ .10

<u>ขั้นตอนการทดสอบสมมติฐาน</u>

<u>ขั้นตอนที่ 1</u> กำหนดสมมติฐานเพื่อการทดสอบ

 $H_0: \mu_1 = \mu_2 = ... = \mu_k$ $H_1: มีอย่างน้อยหนึ่งคู่ที่ไม่เท่ากัน$

<u>ขั้นตอนที่ 2</u> กำหนดระดับนัยสำคัญ (**\alpha**) = 0.10
 <u>ขั้นตอนที่ 3</u> วิเคราะห์ข้อมูลโดยใช้คำสั่ง One – Way ANOVA โดยใช้
 โปรแกรมสำเร็จรูปทางสถิติ PSPP ดังนี้

1. สร้างข้อมูลในตารางลงในโปรแกรมสำเร็จรูป PSPP บันทึกข้อมูลโดยใช้ชื่อ file ว่า Sample 4 ดังรูป

🥌 *s	ample	e4.sav	[Data	5et3]·	– PSP	PIRE Dal	ta Edito	r			
<u>F</u> ile	<u>E</u> dit	<u>V</u> iew	<u>D</u> ata	Trans	sform	<u>A</u> nalyze	Utilitie	s <u>W</u> ir	ndows	<u>H</u> elp	
Ľ		ř.	ß	ð	Q	ô	S		Þ	•	

Case	ยี่ห้อคอมพิวเตอร์		จำนวนที่ขายได้	
1		1	78.00	
2		1	91.00	
3		1	97.00	
4		1	82.00	
5		1	85.00	Ι
6		1	77.00	
7		2	64.00	
8		2	72.00	
9		2	68.00	
10		2	77.00	
11		2	56.00	
12		2	95.00	
13		3	55.00	
14		3	66.00	
15		3	49.00	
16		3	64.00	
17		3	70.00	
18		3	68.00	
19		4	75.00	
20		4	93.00	
21		4	78.00	

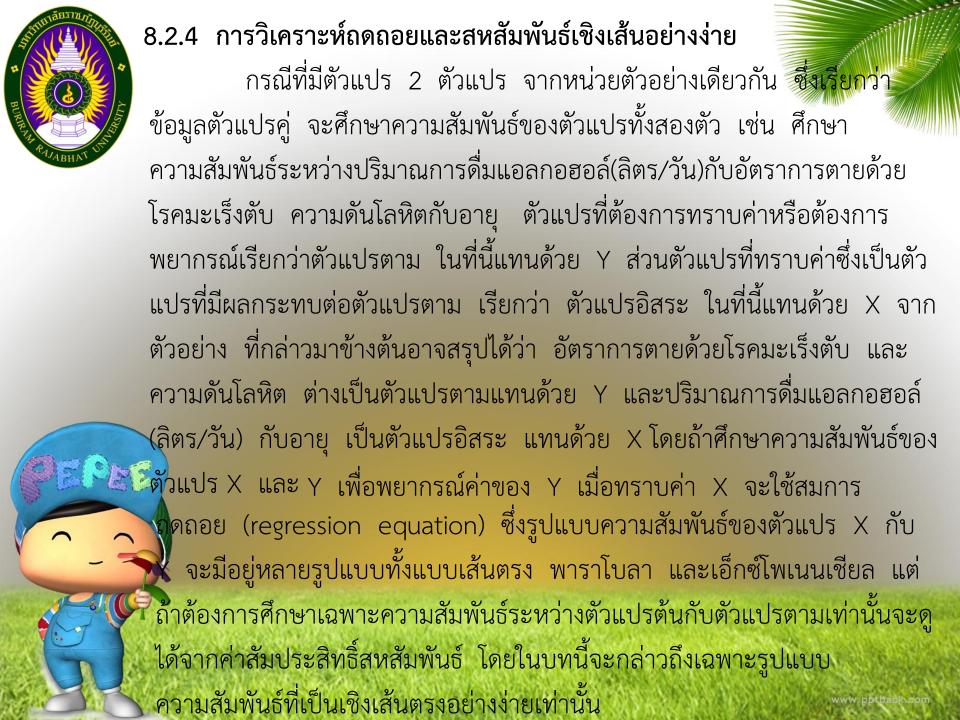
EPER.

Click Analyze → Compare Mean → One - Way จะได้หน้าจอดังรูป

🗳 One-Way ANO¥A		×
🛿 ยี่ห้อคอมพิวเตอร์	Dependent <u>V</u> ariable(s): ี่ ฉำนวนที่ขายได้	<u>O</u> K
		Paste
	► Eactor: ยี่ห้อคอมพิวเตอร์	Cancel
	Statistics	<u>R</u> eset
	<u>Homogeneity</u>	Help

 ตัวแปรจำนวนที่ขายได้ไปไว้ที่ช่อง Dependent Variable (s) ส่วนตัว แปรยี่ห้อคอมพิวเตอร์ใส่ไว้ที่ช่อง Factor : จากนั้น Click OK จะได้ ผลลัพธ์ ดังรูป

ONEWAY


ONEWAY /VARIABLES= จำนวนที่ขายได้ BY ยี่ห้อคอมพิวเตอร์.

ANOVA

		Sum of Squares	ď	Mean Square	F	Sig,
<i>งำนวนทั่</i> ชายได้	Between Groups	1636.50	3	545.50	5.41	.007
	Within Groups	2018.00	20	100.90		
	Total	3654.50	23			

<u>การสรุปผล</u>

ให้พิจารณาค่า Sig ถ้าค่า Sig < α จะปฏิเสธสมมติฐาน H₀ แต่ ถ้าค่า Sig > α จะยอมรับสมมติฐาน H₀ ในที่นี้ค่า Sig = 0.007 ซึ่งน้อยกว่าค่า α = 0.05 ดังนั้นจะปฏิเสธ สมมติฐาน H₀ นั่นคือ จำนวนที่ขายได้ของเครื่องคอมพิวเตอร์ทั้ง 4 ยี่ห้อ แตกต่างกัน

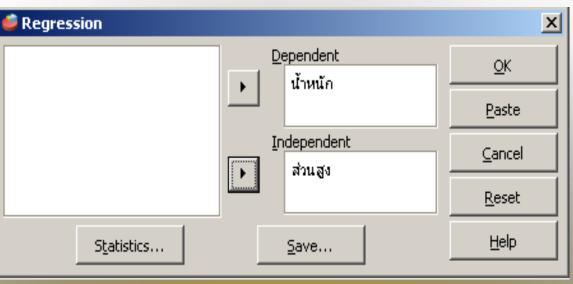
PEE

ตัวอย่าง จากข้อมูลแสดงส่วนสูงและน้ำหนักของนักเรียน โรงเรียนแห่งหนึ่ง จำนวน 20 คน ดังนี้

ส่วนสูง	น้ำหนัก	ส่วนสูง	น้ำหนัก
90	12	140	27
100	15	150	50
100	20	150	55
110	20	155	57
130	23	135	43
115	16	140	40
95	13	130	23
120	22	120	23
140	25	90	13
140	26	155	56

www.pptback.con

เมื่อทำการพล็อตกราฟจะได้ว่าส่วนสูงและน้ำหนักของ นักเรียนโรงเรียนแห่งนี้มีความสัมพันธ์กันเป็นเชิงเส้นตรง ดังนั้น สามารถหารูปแบบของสมการถดถอย โดยใช้สมการเชิงเส้นตรง และหาค่าสัมประสิทธิ์สหสัมพันธ์ได้ดังนี้



Sample 5 ดังรูป

	🕌 *[Dat	aSet1]—	PSPPIRE D	ata Edi	tor			
	<u>File E</u> d	lit <u>V</u> iew	<u>D</u> ata <u>T</u> ra	nsform	<u>A</u> nalyze	Utilities	<u>W</u> in	dows
		≚ ∣ ′	8 8	Q	ô	Ş		Þ
	Case	ส่วนสูง	น้ำหนัก					
	1	90	12					
	2	100	15					
	3	100	20					
	4	110	20					
	5	130	23					
	6	115	16					
	7	95	13					
	8	120	22					
	9	140	25					
	10	140	26					
	11	140	27					
	12	150	50					
	13	150	55					
	14	155	57					
	15	135	43					
	16	140	40					
Q,	17	130	23					
	18	120	23					
1	19	90	13					
2	20	155	56					

2.	Click Analyze	\longrightarrow Regression ——	\rightarrow	Linear
จะได้	ก้หน้าจอดังรูป			

3. นำตัวแปรน้ำหนักใส่ไว้ที่ช่อง Dependent ส่วนตัวแปรส่วนสูงใส่ไว้ที่ช่อง Independent จากนั้นClick Statistics...จะได้ดังรูป

PEE

REGRESSION

REGRESSION /VARIABLES= ส่วนสูง /DEPENDENT= น้าหนัก /STATISTICS=COEFF R ANOVA.

Model Summary (น้ำหนัก)

R	R Square	Adjusted R Square	Std. Error of the Estimate
.86	.74	.73	8.02

ANOVA (น้ำหนัก)

	Sum of Squares	ď	Mean Square	F	Sig.
Regression	3303.86	1	3303.86	51.40	.000
Residual	1157.09	18	64.28		
Total	4460.95	19			

Coefficients (น้ำหนัก)

	Unstandardized Coefficients		Standardized Coefficients		
	8	Std. Error	Beta	t	Sig,
(Constant)	-46.63	10.69	.00	-4.36	.000
ส่วนสูง	.60	.08	.86	7.17	.000

จากตารางผลลัพธ์สามารถสรุปได้ว่าค่าสัมประสิทธิ์แสดง ความสัมพันธ์มีค่าเท่ากับ 0.86 แสดงว่าน้ำหนักและส่วนสูงของนักเรียน ตัวอย่างกลุ่มนี้มีความสัมพันธ์กันค่อนข้างมาก และสามารถเขียนสมการ ถดถอยเป็นดังนี้คือ น้ำหนัก(Y) = -46.63+ 0.60 (ส่วนสูง)

8.3 บทสรุป

ในการวิเคราะห์ข้อมูลโดยเฉพาะข้อมูลที่เป็นข้อมูลเชิงปริมาณวิธีการ วิเคราะห์ข้อมูลด้วยวิธีการทางสถิติจะค่อนข้างยุ่งยากและซับซ้อน ดังนั้นในการ วิเคราะห์ข้อมูลเชิงปริมาณด้วยวิธีการทางสถิติจึงมักนิยมใช้โปรแกรมคอมพิวเตอร์เข้ามา ช่วย โดยโปรแกรมสำเร็จรูปที่ใช้ในการวิเคราะห์ข้อมูลทางสถิติจะมีค่อนข้างหลากหลาย ขึ้นอยู่กับผู้ทำการวิเคราะห์จะเลือกใช้ โดยผลที่ได้จากการวิเคราะห์จะมีลักษณะที่ ้คล้ายกัน ซึ่งโปรแกรมสำเร็จรูปในปัจจุบันส่วนใหญ่มักจะมีลิขสิทธิ์ทำให้มีข้อจำกัดในการ เลือกใช้ โปรแกรม PSPP (a program of statistical analysis of sample data) เป็นโปรแกรมโอเพนซอร์ส ที่มีฟังก์ชั่นและลักษณะการทำงานเหมือนกับโปรแกรม SPSS ดังนั้นผู้ที่เคยใช้โปรแกรม SPSS มาก่อนจะสามารถที่จะใช้โปรแกรม สำเร็จรูปตัวนี้ได้ไม่ยาก แต่อย่างไรก็ตามสิ่งสำคัญที่สุดสำหรับการวิเคราะห์ข้อมูลโดยใช้ โบร์แกรมสำเร็จรูปทางสถิติไม่ว่าจะเลือกใช้โปรแกรมใดก็คือการแปลผลและสรุปผลที่ได้ **จากการวิเคราะห์ข้อมูลให้ถูกต้องที่สุด**