

บทที่ 7 การทดสอบภาวะสารูปสนิทดี

การทดสอบภาวะสารูปสนิทดี เป็นวิธีการทางสถิติที่ใช้สำหรับวิเคราะห์ ข้อมูลที่ได้มาจากการนับ (counts) โดยสถิติที่ใช้ในการทดสอบจะใช้สถิติทดสอบ ไคสแควร์ (Chi – Square Test) ในการทดสอบ สำหรับการเก็บรวบรวมข้อมูลจะถูก เก็บอยู่ในรูปของตารางการแจกแจงแบบทางเดียวโดยจัดเป็นข้อมูลกลุ่มหรือข้อมูลจำแนก ประเภท (categorical data) เช่น ตัวอย่างที่ 1 ตารางแสดงจำนวนอาจารย์ในสังกัดคณะวิทยาศาสตร์ มหาวิทยาลัย ราชภัฏบุรีรัมย์ประจำภาคการศึกษาที่ 1/2557 จำแนกตามสาขาวิชาที่สังกัด

สาขาวิชา	จำนวนอาจารย์
คณิตศาสตร์	7
เคมี	13
ชีววิทยา/ชีววิทยาประยุกต์	10
ฟิสิกส์	9
วิทยาศาสตร์การอาหาร	3
เทคโนโลยีสารสนเทศ	16
วิทยาการคอมพิวเตอร์	12
วิทยาศาสตร์การกีฬา	3
วิทยาศาสตร์สิ่งแวดล้อม	7
สถิติประยุกต์	6
สิ่งทอ/วิทยาศาสตร์สิ่งทอ	4
สาธารณสุขชุมชน	10

ตัวอย่างที่ 2 แสดงจำนวนถั่วเมล็ดเรียบกับถั่วเมล็ดขรุขระที่ ได้จากการผสมพันธุ์

ลักษณะของถั่ว	จำนวนที่สังเกตได้ (ความถี่)
เมล็ดเรียบ	69
เมล็ดขรุขระ	31
รวม	100

คำถามที่มักเกิดขึ้นจากตารางการแจกแจงแบบทางเดียวก็คือ "จำนวนหรือความถี่ของ ข้อมูลที่สังเกตได้ (Observed frequency) จากกลุ่มข้อมูลย่อยของตัวแปรที่สนใจตัวหนึ่ง จะมีค่าแตกต่างจากจำนวนหรือความถี่ของข้อมูลที่คาดหมายตามทฤษฎีของกลุ่มข้อมูลย่อย ในตัวแปรนั้น (Expected frequency) หรือไม่ หรืออาจเกิดข้อสงสัยเกี่ยวกับแจกแจง ของข้อมูลที่เก็บรวบรวมมาว่ามีการแจกแจงแบบใด ซึ่งในการตอบข้อสงสัยจาก คำถามเหล่านี้เราจะใช้การทดสอบที่เรียกว่าการทดสอบภาวะสารูปสนิทดี

7.1 ขั้นตอนการทดสอบภาวะสารูปสนิทดี

- 1. กำหนดสมมติฐานเพื่อการทดสอบ
- 2. คำนวณค่าความถี่ที่คาดหมายทางทฤษฎี (E_i)

โดยที่
$$E_i = Np_i \frac{N \cdot c_i}{\sum_{i=1}^k c_i}$$
 และ $N = \sum_{i=1}^k O$

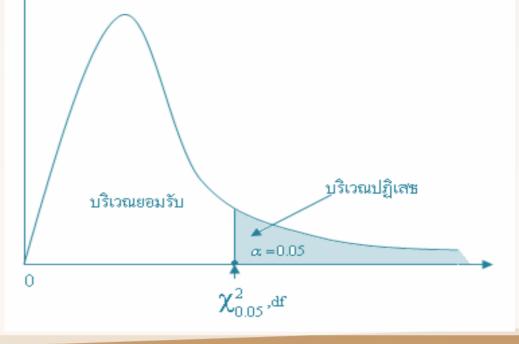
3. กำหนดระดับนัยสำคัญของการทดสอบ (lpha)

4. คำนวณค่าสถิติไค – สแควร์

$$\chi^{2} = \sum_{i=1}^{k} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

5. หาบริเวณอาณาเขตวิกฤต

เปิดตาราง หาค่าบริเวณอาณาเขตวิกฤตที่ระดับนัยสำคัญ ซึ่งการเปิดตารางจะขึ้นอยู่กับระดับความเป็นอิสระของชั้นหรือกลุ่มข้อมูล ย่อย (degree of freedom: df) โดยนับจำนวนชั้นหรือกลุ่มข้อมูลย่อย ที่มีอิสระต่อการลง ข้อมูลและยังคงทำให้ผลรวมความถี่ข้อมูลที่สังเกตได้ยังคงเหมือนเดิม



6. สรุปผล

้ถ้าค่า χ^2 ที่คำนวณได้ มีค่ามากกว่าหรือเท่ากับ χ^2

ที่เปิดจากตาราง จะปฏิเสธสมมุติฐานหลัก (H₀) และยอมรับสมมุติฐานรอง (H₁)

7.2 การทดสอบภาวะสารูปสนิทดี

7.2.1 การทดสอบอัตราส่วน

ในประชากรหนึ่งถ้ามีเหตุการณ์ที่สนใจ k เหตุการณ์ (k>2) ดังตาราง ตารางแสดงลักษณะข้อมูลความถี่ลักษณะที่สนใจเกิดขึ้นจริง (O_i) กับค่าคาดหมาย (E_i)

กลุ่มหรือระดับ	ค่าความถี่จากการสังเกตที่เกิดขึ้นจริง	ค่าความถี่คาดหวัง
1	O ₁	\mathbf{E}_1
2	O ₂	E ₂
3	O ₃	E ₃
k	O _k	E _k
	Ν	Ν

ถ้าอยากทราบว่าการเกิดขึ้นของเหตุการณ์ต่างๆในที่นี้ให้เป็น $A_1, A_2, A_3, \dots, A_k$ เป็นไปตามอัตราส่วน $c_1 : c_2 : c_3 \dots : c_k$ หรือไม่ สามารถสรุปโดยการทดสอบสมมติฐานด้วยสถิติทดสอบไค – สแควร์ ซึ่งมีองศาความเป็นอิสระ k – 1 โดยมีขั้นตอนการทดสอบสมมติฐานดังนี้ <u>ขั้นที่ 1</u> ตั้งสมมติฐาน $H_0 : A_1 : A_2 : A_3 : \dots : A_k = c_1 : c_2 : c_3 \dots : c_k$ $H_1 : A_1 : A_2 : A_3 : \dots : A_k \neq c_1 : c_2 : c_3 \dots : c_k$

<u>ขั้นที่ 2</u> คำนวณค่าสถิติไค – สแควร์

$$\chi^{2} = \sum_{i=1}^{k} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

โดยที่
$$E_i = Np_i \frac{N \cdot c_i}{\sum_{i=1}^k c_i}$$
 และ $N = \sum_{i=1}^k O_i$

<u>ขั้นที่ 3</u> อาณาเขตวิกฤตภายใต้ระดับนัยสำคัญ **α** พิจารณา อาณาเขตวิกฤต

$$\chi^2 \geq \chi^2_{\alpha,k-1}$$

<u>ขั้นที่ 4</u> สรุปผล ถ้า X²_{cal} ตกอยู่ในอาณาเขตวิกฤต สามารถสรุปได้ว่าข้อมูลที่รวบรวม ได้มาจากประชากรซึ่งการเกิดเหตุการณ์ต่างๆไม่เป็นไปตามอัตราส่วนตามสมมติฐาน H₀ **ตัวอย่างที่ 1** บริษัทผู้ผลิตรถยนต์ยี่ห้อหนึ่ง ต้องการวางแผนการผลิตโดยคาดการณ์ว่า ประเภทรถยนต์สี่ประเภทที่ผลิตมีผู้นิยมดังนี้ รถเก๋ง 20% รถกระบะ 2 ตอน 35% รถกระบะตอนเดียว 27% และรถตู้ 18% สุ่มตัวอย่างลูกค้ามา 200 ราย พบว่าลูกค้า ซื้อรถดังนี้

					STRUTAUTURINE
ประเภทของ	รถเก๋ง	รถกระบะ 2 ตอน	รถกระบะ	รถตู้	
รถยนต์			ตอนเดียว		
ความถี่ที่สังเกตได้	43	65	52	40	TRAJABHAT USA

จงทดสอบสมมติฐานที่บริษัทผู้ผลิตคาดการณ์ความนิยมไว้ถูกต้องหรือไม่ที่ระดับ นัยสำคัญ 0.01

วิธีทำ <u>ขั้นที่ 1</u> ตั้งสมมติฐาน

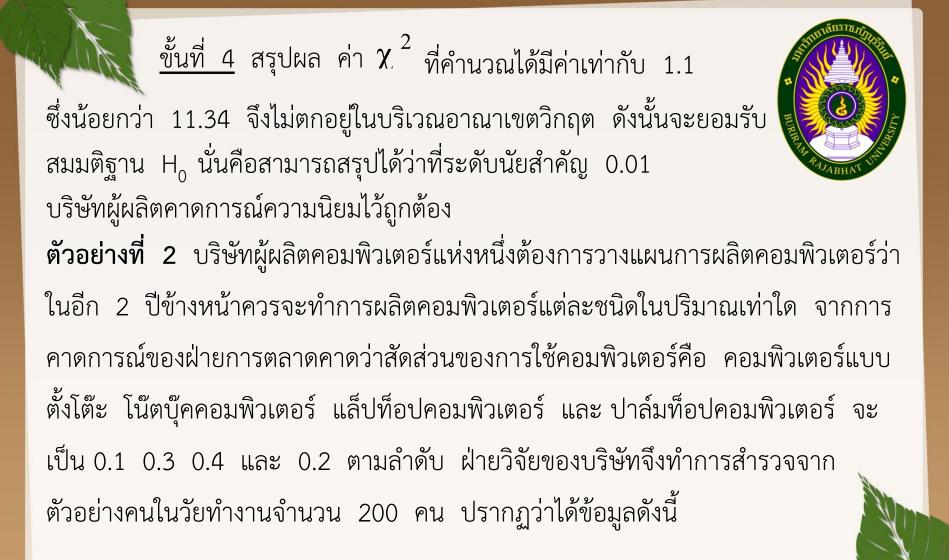
H₀: รถเก๋ง : รถกระบะ 2 ตอน : รถกระบะตอนเดียว : รถตู้ = 0.2 : 0.35 : 0.27 : 0.18
H₁ : รถเก๋ง : รถกระบะ 2 ตอน : รถกระบะตอนเดียว : รถตู้ ≠ 0.2 : 0.35 : 0.27 : 0.18

<u>ขั้นที่ 2</u> คำนวณค่าสถิติไค – สแควร์

ประเภทของรถยนต์	O _i	P _i	E _i =NP _i	O _i – E _i	(O _i – E _i) ²	$\frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}$
รถเก๋ง	43	0.2	40	3	9	0.225
รถกระบะ 2 ตอน	65	0.35	70	-5	25	0.357
รถกระบะตอนเดียว	52	0.27	54	-2	4	0.074
รถตู้	40	0.18	36	4	16	0.444
ผลรวม						$\chi^2 = 1.1$

<u>ขั้นที่ 3</u> อาณาเขตวิกฤตภายใต้ระดับนัยสำคัญ lpha พิจารณาอาณาเขตวิกฤต

$$\chi^2 \ge \chi^2_{0.01,4-1} = 11.34$$



ชนิดของคอมพิวเตอร์	จำนวนผู้ใช้
คอมพิวเตอร์แบบตั้งโต๊ะ	25
โน๊ตบุ๊คคอมพิวเตอร์	55
แล็ปท็อปคอมพิวเตอร์	85
ปาล์มท็อปคอมพิวเตอร์	35
รวม	200

จงทดสอบสมมติฐานที่ฝ่ายการตลาดของบริษัทคาดการณ์ไว้ถูกต้องหรือไม่ที่ระดับ นัยสำคัญ 0.10 **วิธีทำ** <u>ขั้นที่ 1</u> ตั้งสมมติฐาน H₀ : คอมพิวเตอร์แบบตั้งโต๊ะ : โน๊ตบุ๊คคอมพิวเตอร์ : แล็ปท็อปคอมพิวเตอร์ : ปาล์มท็อปคอมพิวเตอร์ = 0.1 : 0.3 : 0.4 : 0.2 H₁ : คอมพิวเตอร์แบบตั้งโต๊ะ : โน๊ตบุ๊คคอมพิวเตอร์ : แล็ปท็อป คอมพิวเตอร์ : ปาล์มท็อปคอมพิวเตอร์ ≠ 0.1 : 0.3 : 0.4 : 0.2

<u>ขั้นที่ 2</u> คำนวณค่าสถิติไค – สแควร์

$$\chi^{2} = \sum_{i=1}^{k} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

ชนิดของคอมพิวเตอร์	O _i	P _i	E _i =NP _i	O _i – E _i	(O _i – E _i) ²	$\frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}$
คอมพิวเตอร์แบบตั้งโต๊ะ	25	0.1	20	5	25	1.25
โน๊ตบุ๊คคอมพิวเตอร์	55	0.3	60	-5	25	0.417
แล็ปท็อปคอมพิวเตอร์	85	0.4	80	5	25	0.3125
ปาล์มท็อปคอมพิวเตอร์	35	0.2	40	-5	25	0.625
รวม	200					χ^2 = 2.6045

<u>ขั้นที่ 3</u> อาณาเขตวิกฤตภายใต้ระดับนัยสำคัญ lpha พิจารณา

อาณาเขตวิกฤต

$$\chi^2 \ge \chi^2_{0.10,4-1} = 6.25$$

RIAN A ALABHAN UNA

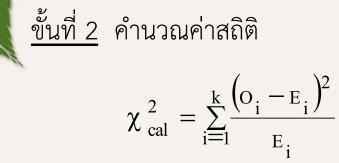
<u>ขั้นที่ 4</u> สรุปผล ค่า x²ที่คำนวณได้มีค่าเท่ากับ 2.6045 ซึ่งมีค่าน้อยกว่า 6.25จึงไม่ตกอยู่ในบริเวณอาณาเขตวิกฤต ดังนั้นจะยอมรับสมมติฐาน H_o นั่นคือสามารถ สรุปได้ว่าที่ระดับนัยสำคัญ 0.01 ฝ่ายการตลาดของบริษัทคอมพิวเตอร์คาดการณ์ไว้ถูกต้อง

7.2.2 การทดสอบการแจกแจง

ในการศึกษาตัวแปรหนึ่ง ถ้ามีความสงสัยเกี่ยวกับการแจกแจงของ ตัวแปรนั้น สามารถทดสอบได้ด้วยสถิติทดสอบไค – สแควร์ โดยมีขั้นตอนการ ทดสอบสมมติฐานดังนี้ <u>ขั้นที่ 1</u> ตั้งสมมติฐาน

H₀ : ตัวแปรมีการแจกแจงตามข้อสงสัย

H₁ : ตัวแปรไม่มีการแจกแจงตามข้อสงสัย



<u>ขั้นที่ 3</u> อาณาเขตวิกฤตภายใต้ระดับนัยสำคัญ lpha พิจารณาอาณาเขตวิกฤต

$$\chi^{2} \geq \chi^{2}_{\alpha, k-r-1}$$

<u>ขั้นที่ 4</u> สรุปผล ถ้า χ^2_{cal} ตกอยู่ในอาณาเขตวิกฤต ไม่สามารถสรุปได้ว่าตัวแปรมีการ แจกแจงตามข้อสงสัย

ตัวอย่างที่ 1 ข้อมูลที่กำหนดให้ต่อไปนี้เป็นความยาวของทารกแรกเกิด จำนวน 125 คน

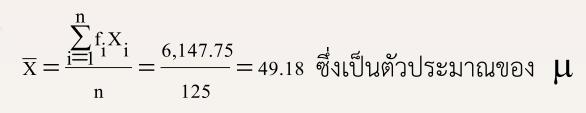
ความยาว (ซม.)	45 – 46.9	47 – 48.9	49 – 50.9	51 – 52.9	53 – 54.9
จำนวน	28	32	35	20	10

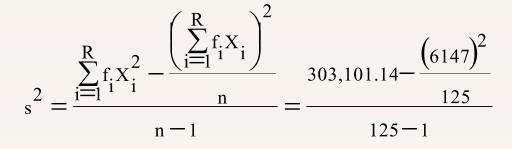
สรุปได้หรือไม่ว่าความยาวของทารกแรกเกิดมีการแจกแจงแบบปกติ ที่ระดับนัยสำคัญ 0.05

วิธีทำ <u>ขั้นที่ 1</u> ตั้งสมมติฐาน

- H₀: ความยาวของทารกแรกเกิดมีการแจกแจงแบบปกติ
- H₁ : ความยาวของทารกแรกเกิดไม่ได้มีการแจกแจงแบบปกติ ขั้นที่ <u>2</u> คำนวณค่าสถิติ

ความยาว (ซม.)	จำนวน (f _i)	จุดกึ่งกลางชั้น (X _i)	x _i ²	f _i X _i	$f_i X_i^2$
45 – 46.9	28	45.95	2111.4025	1286.6	59,119.27
47 – 48.9	32	47.95	2299.2095	1534.4	73,574.70
49 – 50.9	35	49.95	2495.0025	1748.25	87,325.09
51 – 52.9	20	51.95	2698.8025	1039	53,976.05
53 - 54.9	10	53.95	2910.6025	539.5	29,106.03
รวม	125			6147.75	303,101.14



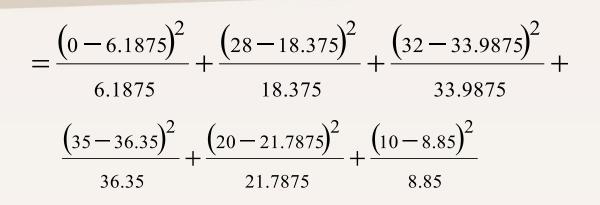


$$=\frac{303,101.14-302,284.87}{124}=\frac{816.27}{124}=6.58$$

$$s = \sqrt{6.58} = 2.57$$

ขอบเขตชั้น	จำนวน	ค่ามาตรฐาน	P(Z)	E = N P(Z)
	(O _i)	$(z = \frac{x - \mu}{\sigma})$		
ไม่เกิน 44.95	0	ไม่เกิน (-1.65)	0.0495	6.1875
44.95 – 46.95	28	(-1.65) – (-0.87)	0.147	18.375
46.95 – 48.95	32	(-0.87) – (-0.09)	0.2719	33.9875
48.95 – 50.95	35	(-0.09) – (0.69)	0.2908	36.35
50.95 - 52.95	20	(0.69) – (1.47)	0.1743	21.7875
52.95 - 54.95	10	(1.47) – (2.25)	0.0586	7.325
54.95 เป็นต้นไป	0	2.25 เป็นต้นไป	0.0122	1.525 ⁵ 8.85
รวม	125			

 $\chi^{2}_{cal} = \sum_{i=1}^{6} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$



= 6.188 + 5.042 + 0.116 + 0.05 + 0.147 + 0.149

= 11.692

<u>ขั้นที่ 3</u> พิจารณาอาณาเขตวิกฤตภายใต้ระดับนัยสำคัญ **α**=0.05 จะได้บริเวณ อาณาเขตวิกฤตที่

$$\chi^2_{cal} \ge \chi^2_{0.05,6-2-1} = \chi^2_{0.05,3} = 7.8$$

<u>ขั้นที่ 4</u> สรุปผล เนื่องจากค่า X²_{cal} ที่คำนวณได้มีค่ามากกว่า 7.8 จึงตกอยู่ใน บริเวณอาณาเขตวิกฤต ดังนั้นจึงปฏิเสธสมมติฐาน H₀ นั่นคือ ที่ระดับ นัยสำคัญ 0.05 ความยาวของทารกแรกเกิดไม่ได้มีการแจกแจงแบบปกติ ตัวอย่างที่ 2 คาร์แคร์แห่งหนึ่งเปิดบริการล้างรถยนต์ด้วย เครื่องล้างอัตโนมัติในการคิดราคาค่าบริการขึ้นอยู่กับการเลือกใช้บริการของ ลูกค้า เจ้าของคาร์แคร์ต้องการทราบว่าจำนวนรถที่เข้ามาใช้บริการในช่วงเวลา เย็นวันทำงาน (16.30 – 18.30 น.) มีการแจกแจงแบบปัวส์ซองหรือไม่จึงทำการ รวบรวมข้อมูลจำนวนรถที่มาใช้บริการในช่วงเวลาดังกล่าวเป็นเวลา 180 วัน ได้ข้อมูล

จำนวนรถที่เข้ามาใช้บริการล้างรถ	ความถี่ที่สังเกตได้
0	15
1	55
2	60
มากกว่า 2 คัน	50
ຽວນ	180

จงทดสอบที่ระดับนัยสำคัญ 0.01 ถ้าจากประสบการณ์ที่ผ่านมาทราบ

ดังนี้

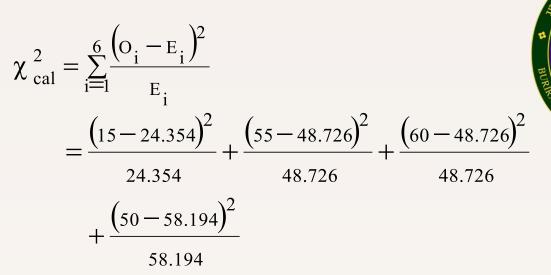
ว่าจำนวนรถยนต์ที่เข้ามาใช้บริการในช่วงเวลาดังกล่าวเฉลี่ยแล้วจะเป็น 2 คัน

วิธีทำ <u>ขั้นที่ 1</u> ตั้งสมมติฐาน H_o: จำนวนรถที่เข้ามาใช้บริการในช่วงเวลาเย็นวันทำงาน (16.30 – 18.30 น.) มีการแจกแจงแบบปัวส์ซอง H₁: จำนวนรถที่เข้ามาใช้บริการในช่วงเวลาเย็นวันทำงาน (16.30 – 18.30 น.) ไม่ได้มีการแจกแจงแบบปัวส์ซอง ขั้นที่ 2 คำนวณค่าสถิติ

จากโจทย์ทราบว่า λ = 2 คำนวณค่าสถิติดังตาราง

จำนวนรถที่เข้ามาใช้บริการล้าง	ความถี่ที่สังเกตได้	P(X=x)	E = N P P(X=x)
ភ្ល	(O _i)		
0	15	0.1353	24.354
1	55	0.2707	48.726
2	60	0.2707	48.726
มากกว่า 2 คัน	50	0.3233	58.194
ຽວນ	180	1.0000	180

จากสูตร



= 3.593 + 0.808 + 2.609 + 1.154

 $\frac{\tilde{v}\check{u}n\dot{n}}{3}$ พิจารณาอาณาเขตวิกฤตภายใต้ระดับนัยสำคัญ α =0.01 จะได้บริเวณ อาณาเขตวิกฤตที่ $\chi^2_{cal} \ge \chi^2_{0.01,4-1-1} = \chi^2_{0.01,2} = 9.21$ $\frac{\tilde{v}\check{u}n\dot{n}}{4}$ สรุปผล เนื่องจากค่า χ^2_{cal} ที่คำนวณได้มีค่าน้อยกว่า 9.21 จึงไม่ตก อยู่ในบริเวณอาณาเขตวิกฤต ดังนั้นจึงยอมรับสมมติฐาน H₀ นั่นคือ ที่ระดับนัยสำคัญ 0.01 จำนวนรถที่เข้ามาใช้บริการในช่วงเวลาเย็นวัน ทำงาน (16.30 – 18.30 น.) มีการแจกแจงแบบปัวส์ซอง 7.3 บทสรุป

การทดสอบภาวะสารูปสนิทดี เป็นการทดสอบสมมติฐาน ในกรณีที่ข้อมูลถูกเก็บรวบรวมมาอยู่ในรูปของความถี่ (frequency data) หรือ ้ข้อมูลจำแนกประเภท (categorical data) โดยที่ข้อมูลถูกจำแนกประเภทแบบ ทางเดียว (one dimensional data) หรือเป็นตารางความถี่แบบทางเดียว (One-Way frequency table) โดยในการทดสอบสมมติฐานจะแบ่งเป็น 2 ลักษณะ คือ การ ทดสอบอัตราส่วนของประชากรเป็นไปตามที่คาดไว้หรือไม่ และทดสอบการแจกแจงของ ประชากรเป็นไปตามที่คาดไว้หรือไม่ สำหรับสถิติที่ใช้ในการทดสอบคือสถิติทดสอบ ใคสแควร์ (χ^2 – test) ซึ่งเหมาะสมกับตัวอย่างขนาดใหญ่ ถ้าขนาดของตัวอย่างเป็น 4 หรือ 5 เท่าของจำนวนเหตุการณ์ ค่าไคสแควร์จะประมาณได้ค่อนข้างดี แม้ว่าค่าความถึ่ คาดหวังจะน้อย แต่ค่าความถี่คาดหวังก็ไม่ควรน้อยกว่า 5 ถ้าค่าความถี่คาดหวังของ เหตุการณ์ใดน้อยกว่า 5 จะต้องทำการปรับแก้โดยรวมความถี่ของเหตุการณ์ นั้นเข้ากับความถี่ของเหตุการณ์อยู่ใกล้เคียง ซึ่งจะทำให้องศาความเป็นอิสร ลดลง หรือแนวทางปรับแก้ที่ดีก็คือ ควรเก็บข้อมูลเพิ่มเติมให้ตัวอย่างมีขนาดใหญ่ขึ้น