

บทที่ 2

การนำเสนอข้อมูล

อาจารย์รินทร์หทัย กิตติ์ธนารุจน์

โดยทั่วไปแล้วการเก็บรวบรวมข้อมูลสถิติในการศึกษางานด้านวิทยาศาสตร์และ งานด้านต่างๆนั้นมักจะมีข้อมูลจำนวนมาก ในการทำความเข้าใจจากข้อมูลต่างๆเหล่านี้จึง เป็นการยาก แต่ถ้าหากว่ามีการนำข้อมูลเหล่านี้มาจัดระเบียบใหม่จะทำให้สามารถมองเห็น ลักษณะของข้อมูลเหล่านี้ได้ชัดเจนขึ้น

การนำเสนอข้อมูล เป็นระเบียบวีการทางสถิติที่เป็นการนำข้อมูลที่ได้จากการ เก็บรวบรวมด้วยวิธีการต่างๆมาจัดระเบียบใหม่เพื่อแสดงรายละเอียดของข้อมูล ทำให้ อ่านได้อย่างสะดวกและง่ายขึ้น โดยการนำเสนอข้อมูลทางสถิติสามารถทำได้หลายวิธี ขึ้นอยู่กับชนิดของข้อมูล และวัตถุประสงค์ของการนำเสนอ เช่น การนำเสนอในรูป บทความ ตาราง แผนภูมิ และกราฟ เป็นต้น

จากบทที่ 1 ได้กล่าวไว้แล้วว่า ข้อมูลเชิงคุณภาพ คือ ข้อมูลที่ไม่ได้วัด ออกมาเป็นตัวเลขแต่จะแสดงถึงคุณลักษณะของสิ่งนั้น เช่น ความคิดเห็นที่อยู่ใน ลักษณะข้อความ ระดับการศึกษา อาชีพ เป็นต้น ดังนั้นวิธีการนำเสนอข้อมูลเชิง คุณภาพที่นิยมใช้กันคือ

2.1.1 การนำเสนอข้อมูลในรูปบทความ

เป็นการนำเสนอโดยการบรรยายข้อมูลสถิติเป็นข้อความ การ นำเสนอแบบนี้ใช้ในกรณีที่ข้อมูลมีจำนวนไม่มาก มักจะเห็นในหนังสือพิมพ์ รายการวิทยุ หรือสรุปรายงานต่างๆ เช่น

ตัวอย่างที่ 1 จากหนังสือรายงานสถิติโรค พ.ศ. 2555 ของกรมการแพทย์ มีการเสนอว่า ปีงบประมาณ 2555 มีผู้ป่วย ทั่วไปที่เข้ามารับการรักษาในสถานพยาบาลสังกัดกรมการแพทย์ จำนวน 172,672 รายเป็นชาย 78,619 ราย คิดเป็นร้อยละ 46 เป็น<mark>หญิง 94,0</mark>53 รายคิดเป็น ร้อยละ 54 สถานพยาบาลสังกัดกรมการแพทย์ มีผู้ป่วยในเข้ารับการรักษามากที่สุดได้แก่ โรงพยาบาลราชวิถี คิดเป็นร้อยละ 24.5 โรงพยาบาลนพรัตนราชธานี คิดเป็นร้อยละ 17.9 และโรงพยาบาลเลิดสิน คิดเป็นร้อยละ11.5 ตามลำดับ

การนำเสนอข้อมูลด้วยวิธีนี้ หากผู้นำเสนอข้อมูล ต้องการให้เห็นการ เปรียบเทียบตัวเลขชัดเจนขึ้น อาจมีการแยกข้อความและตัวเลขออกจากกัน เพื่อให้ผู้อ่าน เห็นชัดเจนขึ้น และสามารถเปรียบเทียบข้อมูลได้ง่าย การนำเสนอวิธีการนี้เราจะเรียกว่า การนำเสนอในรูปบทความกึ่งตาราง เช่น

ตัวอย่างที่ 2 จากหนังสือรายงานสถิติโรค พ.ศ. 2555 ของ กรมการแพทย์ มีการเสนอว่า ปีงบประมาณ 2555 สถานพยาบาลสังกัดกรมการแพทย์ พบว่าโรคที่มีค่าใช้จ่าย มาก ที่สุด 5 อันดับ ได้แก่

> อันดับที่ 1 คือ โรคแอลไซเมอร์จำนวน 15,387.35 บาท อันดับที่ 2 คือโรคลิวคีเมีย จำนวน 12,036.43 บาท อันดับที่ 3 คือโรคสมองเสื่อม จำนวน 7,047.77 บาท อันดับที่ 4 คือ มัลติเปิลสเคลอโรสิส จำนวน 6,355.26 บาท อันดับที่ 5 คือ โรคตับอักเสบเฉียบพลัน จำนวน 6,346.92 บาท

2.1.2 การนำเสนอข้อมูลในรูปแบบตาราง

เป็นการจัดข้อมูลให้อยู่รูปของแถวและสดมภ์ เพื่อให้ข้อมูลง่ายต่อการอ่าน และยังสามารถเปรียบเทียบข้อมูลได้ง่าย โดยทั่วไปจะประกอบไปด้วยส่วนประกอบ ดังนี้คือ

- หมายเลขตาราง
- ชื่อเรื่อง
- ส่วนของตาราง
- หมายเหตุ
- ที่มาหรือแหล่งข้อมูล

การนำเสนอข้อมูล หากเป็นตารางการจำแนกเพียงลักษณะเดียว

เท่านั้นจะเรียกว่า ตารางแบบทางเดียว (one-way table) เช่น

ตัวอย่าง ตารางแสดงจำนวนประชากรที่อาศัยอยู่ในเข<mark>ตเทศบาล</mark>เมือง

ตำบลในเมือง อำเภอเมือง จังหวัดบุรีรัมย์ ปี 2556

ชุมชน	จำนวนประชากร (คน)
หลังศาล	1,262
สะพานยาว	790
บุลำดวนเหนือ	1,701
หลังราชภัฏ	1,034
บุลำดวนใต้	1,722
ตลาด บ.ข.ส	1,561
ประปาเก่า	1,471
ชุมเห็ด	2,235

ชุมชน	จำนวนประชากร (คน)
หนองปรือ	2,286
ต้นสัก	2,119
หลังสถานีรถไฟ	1,520
เทศบาล	1,883
หน้าสถานีรถไฟ	1,833
วัดอิสาณ	1,842
หลักเมือง	1,350
ตลาดสด	1,870
โคกกลาง	920
ฝั่งละลม	473
รวม	27,872

แต่ถ้าตารางที่มีการจำแนกลักษณะสองลักษณะพร้อมกันจะเรียกว่าตารางแบบสอง

ทาง (two-way table) หรือตารางการณ์จร (Contingency table) เช่น

ตัวอย่าง ตารางแสดงจำนวนนักศึกษาชั้นปีที่ 1 คณะวิทยาศาสตร์ มหาวิทยาลัยราชภัฏ บุรีรัมย์ ปี พ.ศ. 2554 จำแนกตาม สาขาวิชา และ เพศ

สาขาวิชา	จำนวนนักศึกษาชั้นปีที่ 1			
	ชาย	หญิง		
คณิตศาสตร์	10	21		
วิทยาการคอมพิวเตอร์หมู่ 1	29	14		
วิทยาการคอมพิวเตอร์หมู่ 2	23	11		
คอมพิวเตอร์และเทคโนโลยีสารสนเทศ	11	12		
(แขนงวิชาเทคโนโลยีสารสนเทศ)				
คอมพิวเตอร์และเทคโนโลยีสารสนเทศ	42	15		
(แขนงวิชาเทคโนโลยีคอมพิวเตอร์)				
คอมพิวเตอร์และเทคโนโลยีสารสนเทศ	13	26		
(การจัดการคอมพิวเตอร์เพื่อการศึกษา)				

สาขาวิชา	จำนวนนักศึกษาชั้นปีที่ 1			
	ชาย	หญิง		
เคมี	5	21		
วิทยาศาสตร์การกีฬา	44	12		
วิทยาศาสตร์สิ่งแวดล้อม	14	44		
สถิติประยุกต์	3	13		
ชีววิทยาประยุกต์	6	20		
สิ่งทอ	7	11		
สาธารณสุขชุมชน หมู่ 1	7	35		
สาธารณสุขชุมชน หมู่ 2	5	29		
สาธารณสุขชุมชน หมู่ 3	5	35		
รวม	224	319		

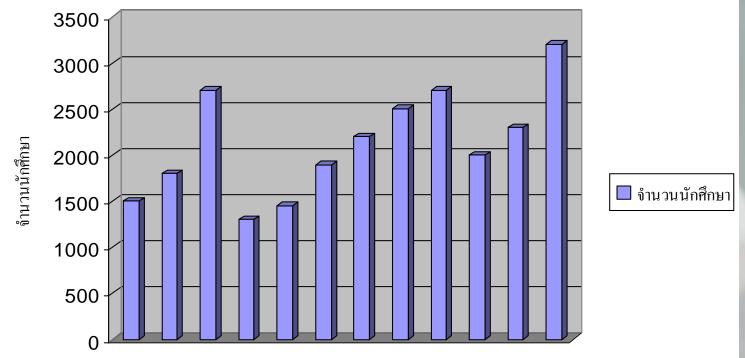
แต่ถ้าเป็นการจำแนกข้อมูลที่สังเกตได้ตามลักษณะหลายๆลักษณะตั้งแต่สาม ลักษณะขึ้นไป พร้อมกัน เราจะเรียกตารางลักษณะนี้ว่าตารางหลายทาง (multi-way table) เช่น

ตัวอย่าง ตารางแสดงอัตราการมีส่วนร่วมในกำลังแรงงานของประชากร จำแนกตาม

เพศ ภาค และเขตการปกครองไตรมาสที่ 3 พ.ศ. 2551 (หน่วย : ร้อยละ)

		ภาค							
เพศ/เขตการ ปกครอง	<u>າ</u> ວນ	กรุงเทพ มหานคร	กลาง	เหนือ	ตะวันออกเฉียงเหนือ	ใต้			
ยอครวม	73.5	70.7	73.8	73.0	73.7	74.9			
ชาย	81.5	79.0	81.7	80.0	82.3	83.2			
หญิง	65.8	63.6	66.4	66.2	65.3	66.9			
ในเขตเทศบาล	70.8	70.7	72.5	69.5	69.5	70.6			
ชาย	78.6	79.0	80.0	76.3	77.2	78.8			
หญิง	63.8	63.6	65.7	63.3	62.2	63.0			
นอกเขตเทศบาล	74.6	-	74.4	73.9	74.5	76.3			
ชาย	82.8	-	82.5	80.9	83.2	84.6			
หญิง	62.8	-	66.7	67.0	65.9	68.2			

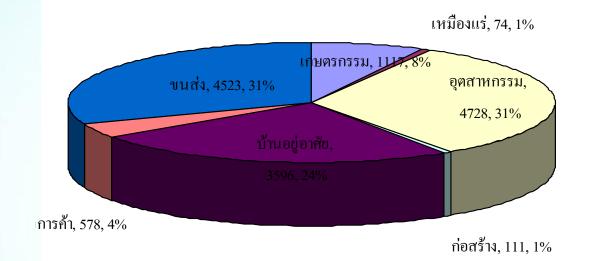
2.1.3 การนำเสนอข้อมูลด้วยแผนภูมิหรือรูปภาพ


เมื่อได้จัดข้อมูลที่จะนำเสนอแล้ว เราอาจจะพิจารณาในการนำเสนอ ข้อมูลด้วยกราฟหรือแผนภูมิ ซึ่งเป็นวิธีที่ใช้ได้ดี เพราะรูปภาพที่แสดงข้อมูลจะทำ ให้เกิดความน่าสนใจ ทำให้อ่านเข้าใจได้ง่าย และรวดเร็วกว่าวิธีอื่น ๆ การรำเสนอ ด้วยกราฟหรือแผนภูมิมีหลายลักษณะ เช่น แผนภูมิแท่งหรือกราฟแท่ง (Bar Chart) กราฟเส้น (Line Graphs) แผนภูมิวงกลม (Pie Chart)แผนภูมิภาพ (Pictogram) เป็นต้น

2.1.3.1 การนำเสนอด้วยแผนภูมิแท่งหรือกราฟแท่ง (Bar Chart) เป็นแผนภูมิที่ประกอบด้วยรูปสี่เหลี่ยมผืนผ้าที่มีความยาวของแต่ละรูปเป็นขนาดของข้อมูล มีช่องไฟระหว่างแท่ง แต่ละแท่งมีความกว้างคงที่ ใช้ในการเปรียบเทียบรายการข้อมูลที่ แตกต่างกันหลายรายการ หรือข้อมูลที่จำแนกตามลักษณะคุณภาพ เวลา หรือความถี่ ซึ่งทำให้ผู้คนเข้าใจง่ายด้วยตนเอง

ตัวอย่าง แผนภูมิแสดงจำนวนนักศึกษาของมหาวิทยาลัยแห่งหนึ่งปี

2545 - 2556


2.1.3.2 การนำเสนอข้อมูลด้วยกราฟเส้น (Line Graphs) การนำ เสนอโดยกราฟเส้นเป็นที่นิยมใช้กันมากในข้อมูลอนุกรมเวลา (Time Series Data) ซึ่งแสดงการเปลี่ยนแปลงลำดับก่อนหลังของเวลาที่ข้อมูลนั้นเกิดขึ้นและ มีจำนวนมาก เป็นการสร้างที่ง่าย อาจเป็นเส้นตรงหรือเส้นโค้งก็ได้ ขึ้นอยู่กับลักษณะ ข้อมูลที่มีอยู่ ใช้เปรียบเทียบระหว่างหลายรายการในระยะยาว

ตัวอย่าง แผนภูมิวงกลมแสดงจำนวนการใช้พลังงานจำแนกตามสาข

เศรษฐกิจ ปี 2555 (หน่วย : พันตัน)

2.1.3.4 การนำเสนอข้อมูลด้วยแผนภูมิภาพ (Pictogram) การนำเสนอ ข้อมูลโดยใช้แผนภูมิภาพทำให้ผู้อ่านเกิดความประทับใจและติดตาได้นานถึงแม้ บางครั้งจะไม่สามารถจำข้อมูลทั้งหมดได้ โดยรูปภาพที่ปรากฏในแผนภูมิภาพจะไม่มีกฏเกณฑ์ ที่แน่นอน ขึ้นอยู่กับความเหมาะสมและวัตถุประสงค์ของการนำเสนอข้อมูล สำหรับการเขียน แผนภูมิรูปภาพ อาจกำหนดให้รูปภาพ 1 รูปแทนจำนวนสิ่งของ 1 หน่วยหรือหลายหน่วยก็ได้ แต่ละรูปต้องมีขนาดเท่ากันเสมอ

2.2 การนำเสนอข้อมูลเชิงปริมาณ

ในการรวบรวมข้อมูลเชิงปริมาณไม่ว่าจะรวบรวมโดยวิธีใดๆก็ตาม โดยปกติแล้ว ข้อมูลที่ได้จะมีจำนวนมาก ทำให้บางครั้งในการวิเคราะห์อาจทำความเข้าใจลักษณะของข้อมูล เบื้องต้นได้ยาก ซึ่งในการวิเคราะห์ข้อมูลสถิติขั้นสูงนั้นมีความจำเป็นที่จะต้องทำความเข้าใจ เกี่ยวกับลักษณะของข้อมูลเสียก่อน

ดังนั้นผู้วิเคราะห์จึงจำเป็นที่จะต้องจัดระบบของข้อมูลเสียก่อน ซึ่งรูปแบบที่นิยม ใช้ในการจัดระบบของข้อมูลกรณีที่ข้อมูลมีจำนวนมากก็คือ การสร้างตารางแจกแจงความถี่ (Frequency table) ซึ่งเมื่อสร้างตารางแจกแจงความถี่แล้วสามารถที่จะนำข้อมูลจาก ตารางแจกแจงความถี่ไปสร้างเป็นรูปฮิสโตแกรม และเมื่อลากเส้นเชื่อมระหว่างจุดกึ่งกลาง ของแท่งฮิสโตแกรมจะกลายเป็นรูปหลายเหลี่ยมแห่งความถี่ และเมื่อปรับให้เส้นเรียบขึ้นจะ กลายเป็นเส้นโค้งความถี่ทำให้สามารถเห็นการกระจายของข้อมูลได้ว่ามีลักษณะเบ้หรือไม่

2.2.1 การสร้างตารางแจกแจงความถึ่

โดยการสร้างตารางแจกแจงความถี่ มีขั้นตอน ดังนี้ <u>ขั้นตอนที่ 1</u> หาพิสัยของข้อมูล (R) พิสัย (Range) = ค่าสูงสุด - ค่าต่ำสุด

ขั้นตอนที่ 2 กำหนดจำนวนชั้น (K)

 $K = 1 + 3.3 \log N$

ขั้นตอนที่ 3 คำนวณหาความกว้างของชั้น (Class Interval : I)

ถ้า I ที่คำนวณได้เป็นทศนิยม ให้ปัดขึ้นเป็นจำนวนเต็มเสมอ

<u>ขั้นตอนที่ 4</u> คำนวณหาขีดจำกัดชั้น (Class limit)

ขีดจำกัดล่างของชั้นแรก = ค่าต่ำสุด – (I × K – R)/2

<u>ขั้นตอนที่ 5</u> นับจำนวนค่าของข้อมูล (ความถี่) ในแต่ละชั้นลงในตาราง

ตัวอย่าง จากข้อมูลคะแนนสอบวิชาสถิติสำหรับนักวิทยาศาสตร์ของนักศึกษา

35 คน ดังนี้

	72	83	82	92	70	91	71	33	42	51
	55	75	38	95	85	93	60	75	38	40
	75	49	53	41	86	89	51	57	66	92
	55	48	85	85	54				1.T	
จงสร้างตารางแจกแจงความถื่										
วิธีทำ <u>ขั้นตอนที่ 1</u> หาพิสัยของข้อมูล (R)										

 $K = 1 + 3.3 \log 35$ = 1 + 3.3(1.544)= 1+ 5.0952= 6.0952 **≈** 7 ขั้นตอนที่ 3 คำนวณหาความกว้างของชั้น (Class Interval : I) | = ความกว้างของชั้น = $\frac{62}{--}$ = 8.86≈9 ขั้นตอนที่ 4 คำนวณหาขีดจำกัดชั้น (Class limit) ขีดจำกัดล่างของชั้นแรก = 33 – (9 × 7 – 62)/2 = 33 − 0.5 = 32.5 **≈** 33 ้ขั้นตอนที่ 5 นับจำนวนค่าของข้อมูล (ความถี่) ในแต่ละชั้นลงในตาราง

ขั้นตอนที่ 2 กำหนดจำนวนชั้น (K)

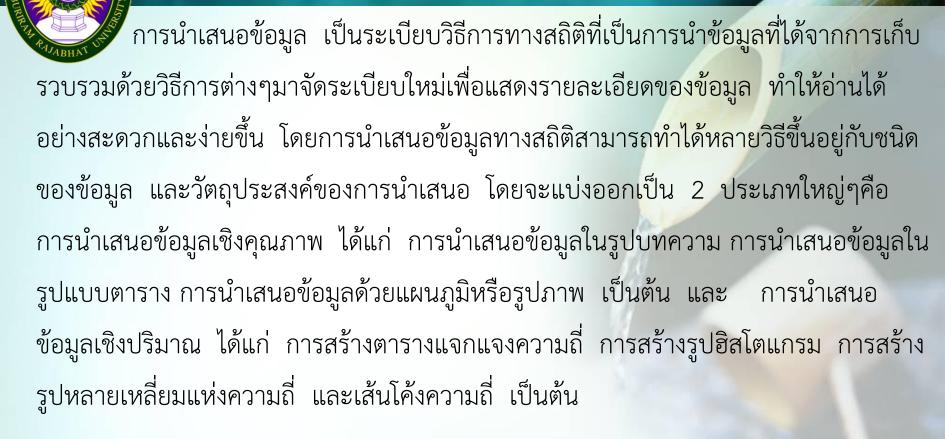
ตารางแจกแจงความถี่แสดงคะแนนสอบวิชาสถิติสำหรับนักวิทยาศาสตร์ของ

นักศึกษา 35 คน

ขีดจำกัด	ขอบเขตชั้น	รอยขีด	ความถื่	ความถื่	ความถื่	จุดกึ่งกลางชั้น
ชั้น	(ขีดจำกัดที่		(จำนวน)	สะสม	สัมพัทธ์	
	แท้จริง)					
33 - 41	32.5 - 41.5	////	5	5	5/35 = 0.143	(33+41)/2 = 37
42 - 50	41.5 – 50.5	///	3	8	3/35 = 0.086	(42+50)/2 = 46
51 – 59	50.5 – 59.5	//////	7	15	7/35 = 0.2	(51+59)/2 = 55
60 - 68	59.5 - 68.5	//	2	17	2/35 = 0.057	(60+68)/2 = 64
69 – 77	68.5 – 77.5	/////	6	23	6/35 = 0.171	(69+77)/2 = 73
78-86	77.5 – 86.5	/////	6	29	6/35 = 0.171	(78+86)/2 = 82
87 – 95	86.5 - 95.5	/////	6	35	6/35 = 0.171	(87+95)/2 = 91
ຽວນ			35		0.999 ≈ 1.00	

2.2.2 รูปฮิสโตแกรม (Histogram)

เป็นกราฟที่นำข้อมูลการแจกแจงความถี่มาแสดงด้วยแท่งสี่เหลี่ยมผืนผ้า โดย ความกว้างของแต่ละแท่งคือผลต่างระหว่างขอบเขตชั้นแต่ละชั้น และความสูงของแต่ละ แท่งก็คือความถี่ของแต่ละชั้น


2.2.3 รูปหลายเหลี่ยมแห่งความถี่ (Frequency Polygon)

รูปหลายเหลี่ยมแห่งความถี่เกิดจากการโยงจุดกึ่งกลางของยอดแผนภูมิ แท่งแต่ละแท่งในฮิสโตรแกรม โดยทำการต่อปลายกราฟให้จดแกนแนวนอน

2.2.4 เส้นโค้งความถี่ (Frequency Curve)

เส้นโค้งความถี่เป็นการปรับรูปหลายเหลี่ยมแห่งความถี่ให้เรียบขึ้น ทำให้ สามารถมองเห็นได้ว่าข้อมูลมีลักษณะการกระจายเป็นแบบใด มีความเบ้เกิดขึ้นหรือไม่

2.3 บทสรุป

