บทที่ 1 เวกเตอร์ในสองมิติและสามมิติ (Vector in Plane and Spaces)

เวกเตอร์ใน 2 มิติ

	วามหมายของเวกเตอร์ วากเตอร์ คือ ปริมาณที่มีทั้งขนาดและทิศทาง เขียนแทนด้วยสัญลักษณ์ $\overrightarrow{AB}, ec{u}, ec{v}$
	ทั่วอย่าง 1.1 กำหนดให้ $Aig(0,0ig), Big(1,2ig), Cig(4,1ig)$ และ $Dig(5,3ig)$ เป็นจุดบนระนาบ จงหา
AB แล	ver CD
É	อาจเขียนได้เป็น $ec{u}=a\hat{i}+b\hat{j}=\left\langle a,b ight angle =egin{bmatrix} a\b \end{bmatrix}$
Į	ราเรียก $a\hat{i}$ และ $b\hat{j}$ ว่า
	เละเรียกเรียก a และ b ว่า
	าารเท่ากันของเวกเตอร์
	นิยาม 2.1 เวกเตอร์สองเวกเตอร์ใด ๆ จะเท่ากันก็ต่อเมื่อมีขนาดเท่ากันและทิศทางเดียวกัน เดให้ $ec u=a\hat i+b\hat j$ และ $ec v=c\hat i+d\hat j$ จะได้ว่า $ec u=ec v$ ก็ต่อเมื่อ $a=c$ และ $b=d$
Ģ	ตัวอย่าง 2.1 กำหนดให้ $Aig(0,0ig), Big(1,2ig), Cig(4,1ig)$ และ $Dig(5,3ig)$ จงแสดงว่า $\overrightarrow{AB}=\overrightarrow{CD}$
•••••	
••••••	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	

3. การบวกและการลบของเวกเตอร์ $f u$ แล้วผลบวกของ $ec u$ กับ $ec v$ เขียนแทนด้วย $ec u+ec v$
ตัวอย่าง 3.1 กำหนดให้ $Aig(0,0ig), Big(1,2ig), Cig(4,1ig)$ และ $Dig(5,3ig)$ จงหา $\overrightarrow{AB}+\overrightarrow{AC}$
นิยาม 3.2 ถ้า \vec{u} และ \vec{v} เป็นเวกเตอร์ใด ๆ แล้วผลลบของ \vec{u} กับ \vec{v} เขียนแทนด้วย $\vec{u} + \left(-\vec{v} \right)$
ตัวอย่าง 3.2 กำหนดให้ $Aig(0,0ig), Big(1,2ig), Cig(4,1ig)$ และ $Dig(5,3ig)$ จงหา $\overrightarrow{AB}-\overrightarrow{AC}$
นิยาม 3.3 ถ้า $ec{u}$ เป็นเวกเตอร์ใด ๆ และ k เป็นสเกลาร์ใด ๆ แล้วผลคูณของ $ec{u}$ กับ k เขียนแทน
ด้วย $kec{u}$ - ตัวอย่าง 3.3 กำหนดให้ $ec{u}=3\hat{i}-4\hat{j}$ และ $k=2$ จงหา $kec{u}$
א אויי איז איז איז איז איז איז איז איז איז א

4.	เวกเตอร์ศูนย์ (Zero Vector)
a -	นิยาม 4.1 เวกเตอร์ที่มีขนาดเป็นศูนย์หรือเวกเตอร์ที่มีจุดเริ่มต้นและจุดปลายสิ้นสุดเป็นจุดเดียวกัน
เรียกว่า	เวกเตอร์ศูนย์ (Zero Vector) เขียนแทนด้วย $\vec{0}$
	ตัวอย่าง 4.1 กำหนดให้ $ec{u}=3\hat{i}-4\hat{j}$ จงแสดงว่า $ec{u}-ec{u}=ec{0}$
•••••	
• • • • • • • • •	
• • • • • • • • • •	
• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • • •	
· · · · · · · · · · · · · · · · · · ·	
5.	เวกเตอร์ที่ขนานกัน
	นิยาม 5.1 เวกเตอร์ที่ขนานกัน คือเวกเตอร์ที่มีทิศทางเดียวกันหรือมีทิศทางตรงข้ามกัน
	ตัวอย่าง 5.1 กำหนดให้ $ec{u}=\hat{i}+4\hat{j}$ และ $ec{v}=3\hat{i}+k\hat{j}$ จงหา k ที่ทำให้ $ec{u}$ // $ec{v}$
• • • • • • • • • • • • • • • • • • • •	
•••••	
••••••	
	ตัวอย่าง 5.2 ถ้า $ABCD$ เป็นสี่เหลี่ยมด้านขนานมีพิกัดจุด A เป็น $\left(-1,2\right)$ และ
<u>→</u>	,
AB =	$9\hat{i} + 4\hat{j} \;,\; \overrightarrow{AD} = -\hat{i} + 5\hat{j} \;$ จงหาพิกัดจุด B, C และจุด D
• • • • • • • • • • • • • • • • • • • •	
•••••	

6. ขนาดของเวกเตอร์
นิยาม 6.1 ถ้า $ec{u}=a\hat{i}+b\hat{j}$ ขนาดของ $ec{u}$ เขียนแทนด้วย $\left\Vert ec{u} ight\Vert =\left\Vert a\hat{i}+b\hat{j} ight\Vert =\sqrt{a^{2}+b^{2}}$
ตัวอย่าง 6.1 กำหนดให้ $ec{u}=3\hat{i}+4\hat{j}$ จงหา $\left\Vert ec{u} ight\Vert$
7. เวกเตอร์หน่วย (Unit Vector)
นิยาม 7.1 ถ้า $ec{u}=a\hat{i}+b\hat{j}$ เป็นเวกเตอร์ใด ๆ ที่ไม่ใช่เวกเตอร์ศูนย์ $\dfrac{ec{u}}{\left\Vert ec{u}\right\Vert }=\dfrac{ai+bj}{\sqrt{a^{2}+b^{2}}}$ เป็น
เวกเตอร์หน่วยในทิศทางของ $ec{u}$
ตัวอย่าง 7.1 กำหนดให้ $A\Bigl(-1,3\Bigr)$ และ $B\Bigl(2,-7\Bigr)$ เป็นจุดสองจุด จงหาเวกเตอร์หน่วยในทิศทาง
ของ \overrightarrow{AB} และ \overrightarrow{BA}
8. ผลคูณเชิงสเกลาร์ (Scalar Product or Dot Product)
ผลคู่ณเชิงสเกลาร์ คือ ขนาดของเงาของเวกเตอร์หนึ่งที่ทาบบนเวกเตอร์หนึ่งคูณกับขนาดของเวกเตอร์ นั้น
นิยาม 8.1 ให้ $ec{u}=a\hat{i}+b\hat{j}$ และ $ec{v}=c\hat{i}+d\hat{j}$ ผลคูณเชิงสเกลาร์เขียนแทนด้วย $ec{u}\cdotec{v}$ นิยาม
โดย $ec{u}\cdotec{v}=ac+bd$ หรือ $ec{u}\cdotec{v}=\left\Vert ec{u}\right\Vert \left\Vert ec{v}\right\Vert \cos heta$
ตัวอย่าง 8.1 กำหนดให้ $ec{u}=\left\langle 6,\ 0 ight angle$ และ $ec{v}=\left\langle 5,\ 5 ight angle$ จงหา $ec{u}\cdotec{v}$ และมุมระหว่างสองเวกเตอร์นี้
หมายเหตุ ถ้า $ec{u}\cdotec{v}=0$ แล้ว $ec{u}\perpec{v}$

9. เวกเตอร์ภาพฉาย (Vector Projection)

นิยาม 9.1 ให้ \vec{u} และ \vec{v} เป็นเวกเตอร์ใด ๆ ที่ไม่ใช่เวกเตอร์ศูนย์ และมีจุด O เป็นจุดเริ่มต้นร่วมกัน จากจุดปลายของ \vec{u} ลากตั้งฉากกับ \vec{v} ที่จุด P จะเรียก \overrightarrow{OP} ว่า ภาพฉายของ \vec{u} บน \vec{v} เขียนแทนด้วย สัญลักษณ์ \vec{u}_v หรือ $proj_v\vec{u}$ นิยามโดย

- ภาพฉายเชิงเวกเตอร์ของ $ec{u}$ บน $ec{v}$ คือ $ec{u}_{ec{v}} = \left \dfrac{ec{u} \cdot ec{v}}{\left\ ec{v} ight\ ^2} ight ec{v}$
- ภาพฉายสเกลาร์ของ $ec{u}$ บน $ec{v}$ คือ $\left\ ec{u}_{ec{v}} ight\ =rac{ec{u}\cdotec{v}}{\left\ ec{v} ight\ }$
ตัวอย่าง 9.1 กำหนดให้ $ec{u}=\left\langle 4,3 ight angle$ และ $ec{v}=\left\langle 5,0 ight angle$ จงหาภาพฉายของ $ec{u}$ บน $ec{v}$

เวกเตอร์ใน 3 มิติ

เวกเตอร์ในสามมิติสามารถดำเนินการได้เช่นเดียวกับเวกเตอร์ในสองมิติ และมีคุณสมบัติเพิ่มเติมดังนี้ 10. ผลคูณเชิงเวกเตอร์หรือผลคูณไขว้ (Vector Product or Cross Product)

นิยาม 10 ให้ $\vec{u}=a\hat{i}+b\hat{j}+c\hat{k}$ และ $\vec{v}=d\hat{i}+e\hat{j}+f\hat{k}$ เป็นเวกเตอร์ใด ๆ ในสามมิติ ผลคูณ เชิงเวกเตอร์เขียนแทนด้วยสัญลักษณ์ $\vec{u}\times\vec{v}$ นิยามโดย

$$\vec{u} \times \vec{v} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a & b & c \\ d & e & f \end{vmatrix}$$

	ตัวอย่าง 10.1	กำหนดให้	$\vec{u} = \langle 0, 1 \rangle$	$1, -2 \rangle$	และ $ec{v}=$	$\langle 2, 0, 3 \rangle$	จงหา $ec{u} imesec{v}$	และ $ec{v} imesec{u}$	
									•
	•••••						•••••	•••••	
	•••••	••••••	•••••	•••••	•••••	••••••	•••••	•••••	
•••••		••••••	•••••	•••••	••••••	••••••			•
•••••		••••••	•••••	•••••	•••••	••••••			
								•••••	
	ตัวอย่าง 10.2	กำหนดให้	$\vec{u} = \langle 1,$	2, 3 us	ละ $ec{v}=\left\langle ec{v} ight angle$	-2, 3, -4	$\ket{4}$ จงหา $ec{v} imes ec{v}$	$ec{v}$ และ $ec{u} imesec{u}$	
	ตัวอย่าง 10.2	กำหนดให้	$\vec{u} = \langle 1,$	2, 3	ละ $ec{v}=igl\langle$	-2, 3, -4	$\ket{4}$ จงหา $ec{v} imes$	$ec{v}$ และ $ec{u} imes ec{u}$	
	ตัวอย่าง 10.2	กำหนดให้	$\vec{u} = \langle 1, \dots \rangle$	2, 3 \ lli	ละ $ec{v}=igl\langle$	-2, 3, -4	$\ket{1}$ จงหา $ec{v} imes ec{v}$	$ec{v}$ และ $ec{u} imesec{v}$	
	ตัวอย่าง 10.2	กำหนดให้	$\vec{u} = \langle 1, \dots \rangle$	2, 3 \	ละ $ec{v}=igl\langle$	-2, 3, -4	$\ket{4}$ จงหา $ec{v} imes$	$ec{v}$ และ $ec{u} imes ec{u}$	
	ตัวอย่าง 10.2	กำหนดให้	$\vec{u} = \langle 1, \dots \rangle$	2, 3 \	ละ $ec{v}=igl\langle$	-2, 3, -4	$\ket{1}$ จงหา $ec{v} imes ec{v}$	$ec{v}$ และ $ec{u} imes ec{u}$	
	ตัวอย่าง 10.2	กำหนดให้	$\vec{u} = \langle 1, \dots \rangle$	2, 3 \	ละ $ec{v}=ig<$	-2, 3, -4	$\ket{4}$ จงหา $ec{v} imes$	$ec{v}$ และ $ec{u} imesec{u}$	
	ตัวอย่าง 10.2	กำหนดให้	$\vec{u} = \langle 1, \dots \rangle$	2, 3 \	ละ $ec{v}=igl\langle$	-2, 3, -4	$\ket{4}$ จงหา $ec{v} imes$	$ec{v}$ และ $ec{u} imes ec{u}$	
	ตัวอย่าง 10.2	กำหนดให้	$\vec{u} = \langle 1, \dots \rangle$	2, 3 \	ละ $ec{v}=ig<$	-2, 3, -4	$\left 4 \right>$ จงหา $\left ec{v} \right>$	$ec{v}$ และ $ec{u} imesec{u}$	

11. เวกเตอร์ภาพฉาย (Vector Projection)

	นิยาม 11 ให้ $ec{u}$ และ $ec{v}$ เร็	ป็นเวกเตอร์ใด ๆ ที่	1ีไม่ใช่เวกเตอร์ศูน	เย่ และมีจุด O เ	ป็นจุดตั้งต้นร่วมกัน
•	เยของ $ec{u}$ ลากตั้งฉากกับ $ec{v}$ ท์ มูลักษณ์ $ec{u}_{ec{v}}$	ที่จุด P และเรียก	เวกเตอร์ \overrightarrow{OP} ว	ว่า ภาพฉายของ	$ec{u}$ บน $ec{v}$ เขียนแทน
•••••					
•••••					
•••••					
•••••	ตัวอย่าง 11.1 กำหนดให้	$\vec{x} = /1 2 1$	$\frac{1}{2} = \frac{1}{2} = \frac{1}{2}$		
	MI ARO IN II.I II INI MAIPIN	$a = \langle 1, 2, 3 \rangle$ is	$v = \langle z, -1 \rangle$	ц, — ∠/ члины	IPAID 191 I MAS 10 000
$ec{u}$ บน	$ec{v}$ และภาพฉายสเกลาร์ของ	$ec{u}$ บน $ec{v}$	·	,	
		$ec{u}$ บน $ec{v}$			
	$ec{v}$ และภาพฉายสเกลาร์ของ	<i>u</i> vu <i>v</i>			
	$ec{v}$ และภาพฉายสเกลาร์ของ	<i>u</i> vu <i>v</i>			
	$ec{v}$ และภาพฉายสเกลาร์ของ	<i>u</i> vu <i>v</i>			
	$ec{v}$ และภาพฉายสเกลาร์ของ	<i>u</i> vu <i>v</i>			
	 ข และภาพฉายสเกลาร์ของ 	<i>u</i> vu <i>v</i>			
	 ข และภาพฉายสเกลาร์ของ 	<i>u</i> vu <i>v</i>			
	 ข และภาพฉายสเกลาร์ของ 	<i>u</i> vu <i>v</i>			
	 ข และภาพฉายสเกลาร์ของ 	<i>u</i> vu <i>v</i>			
	ข และภาพฉายสเกลาร์ของ	<i>u</i> vu <i>v</i>			
	ข และภาพฉายสเกลาร์ของ	<i>u</i> vu <i>v</i>			

12. พื้นที่ (Area)

ให้ \vec{u} และ \vec{v} เป็นด้านประชิดของสี่เหลี่ยมด้านขนานในปริภูมิ 3 มิติ จะได้ว่า พื้นที่สี่เหลี่ยมด้านขนาน = ฐาน \times สูง = $\left| \vec{u} \right| \left| \vec{v} \right| \sin \theta$ = $\left| \vec{u} imes \vec{v} \right|$

	٠						
	ตวอยาง 12	.1 เวกเตอร์ $ec{u}$	$ec{i}$ และ $ec{v}$ ห์	ำมุมกันเป็นมุ	ม $\frac{\pi}{\epsilon}$ เรเดียา	ม ถ้าขนาดของ	$ec{u}$ ยาว 5 หน่วย
					0		
และขน	าด $ec{v}$ ยาว 8 ห	หน่วย จงหาพีน	เทีของสีเหลีย	ยมด้านขนาน	ที่มี $ec{u}$ และ	$ec{v}$ เป็นด้านประชิ	ดมุม
••••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •						• • • • • • • • • • • • • • • • • • • •
•••••	• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •
•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •
					• • • • • • • • • • • • • • • • • • • •		
•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •
					• • • • • • • • • • • • • • • • • • • •		
•••••			• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •
	~! 10	.2 จงหาพื้นที่ถึ	غار مظار کے د				
				,	าอดเบน		
(1, -2)	2) (12	1) (= 7	2) Hav (0 0 1			
\ ′	, o, t t , o,	- 11, (5, 7, -	_ 3 1991 0 7	$Z, Z, \perp I$			
`	<i>a</i> , <i>b</i>), (4, <i>b</i> ,	(-1), (5, 7, -1)	- 3) PPP (2, 2, 1)			
		-1), (3, 7, -	- J 66610 (2	2, 2, 1)			
			_ J) 6610 (•••••		
			- 9) ppp10 (2				
			- 3) BEEL (2				
		- 1), (5, 7, -	- 3) BBIO (2				
			- 3) see (2				
			- 3) BBIO (2				
		- 1), (5, 7, -	- 3) BBIO (2				
		- 1), (5, 7, -	- 3) BBIO (2				
			- 3) see (2				
			- 3) BBIO (2				
			- 3) BBIO (2				
	., 3), (4, 3,	- 1), (5, 7, -	- 3) BBIO (2				

13. ปริมาตร (Volume)

ให้ \vec{A}, \vec{B} และ \vec{C} เป็นด้านของขอบรูปทรงสี่เหลี่ยมด้านขนานในปริภูมิสามมิติ โดยมีจุดเริ่มต้น เดียวกัน

$$V =$$
พื้นที่ฐาน $imes$ สูง
$$= \left| \vec{A} \times \vec{B} \right| \left| \vec{C} \right| \cos \theta$$

$$= \left| \left(\vec{A} \times \vec{B} \right) \cdot \vec{C} \right|$$

ตัวอย่าง 13.1 จงหาปริมาตรของทรงสี่เหลี่ยมด้านขนานที่มีด้านขอบเป็นเวกเตอร์ $\vec{A}=\hat{i}-2\hat{j}+3\hat{k},\ \vec{B}=-4\hat{i}+7\hat{j}-11\hat{k},\ \vec{C}=5\hat{i}+9\hat{j}-\hat{k}$

14. งาน (Work)

งานที่ได้จากแรง ec F กระทำให้วัตถุเคลื่อนที่ไปในทิศทางของ ec D คือ $W=ec F\cdotec D$ $= \left|ec F
ight| \left|ec D
ight| \cos heta$

$$V = \vec{F} \cdot \vec{D}$$
$$= |\vec{F}| |\vec{D}| \cos \theta$$

ตัวอย่าง 14.1 จงหางานที่เกิดจากแรง $ec{F}=5\hat{k}$ ที่ทำให้วัตถุเคลื่อนที่ไปตามแนวเส้นตรงจากจุด กำเนิดไปยังจุด $\left(1,2,3 ight)$
ตัวอย่าง 14.2 จงหางานที่เกิดจากกระทำให้วัตถุเคลื่อนที่ไปในแนวเส้นตรงที่เริ่มต้นจากจุด
$Pig(-3,-5,4ig)$ และสิ้นสุดที่จุด $Qig(4,9,11ig)$ ด้วยแรง $ec{F}=rac{6}{7}\hat{i}-rac{2}{7}\hat{j}+rac{5}{7}\hat{k}$
ตัวอย่าง 14.3 จงหางานที่ได้จากการสไลด์ลังไม้ ในการขนสินค้าไปในแนวยาว $20\ m$ โดยการดึง ด้วยแรง $10\ N$ ที่แนวแรงทำมุมกับพื้นดิน 60°

15. การรวมเชิงเส้น

ให้ $\vec{v}_1,\,\vec{v}_2,\,\vec{v}_3,...,\vec{v}_n$ เป็นเวกเตอร์ในปริภูมิสามมิติ และ $c_1,\,c_2,\,c_3,...,c_n$ เป็นสเกลาร์ เวกเตอร์ $\vec{V}=c_1\vec{v}_1+c_2\vec{v}_2+c_3\vec{v}_3,...,c_n\vec{v}_n$ เรียกว่า การรวมเชิงเส้นของ $\vec{v}_1,\,\vec{v}_2,\,\vec{v}_3,...,\vec{v}_n$

ตัวอย่าง 15.1 จงแสดงว่า $ec{V}=5\hat{i}+2\hat{j}+\hat{k}$ เป็นการรวมเชิงเส้นของ $ec{v}_{_{\!1}},ec{v}_{_{\!2}},ec{v}_{_{\!3}}$ เมื่อ
$\vec{v}_{_{1}}=\hat{i},\vec{v}_{_{2}}=\hat{i}+\hat{j},\vec{v}_{_{3}}=\hat{i}+\hat{j}+\hat{k}$
w
ตัวอย่าง 15.2 จงพิจารณาว่า $ec{V}=2\hat{i}-\hat{j}+4\hat{k}$ เป็นการรวมเชิงเส้นของ $ec{v}_{_{\! 1}},ec{v}_{_{\! 2}},ec{v}_{_{\! 3}}$ หรือไม่ เมื่อ
$\vec{v}_{_{1}}=\left\langle 1,0,1\right\rangle ,\ \vec{v}_{_{2}}=\left\langle 1,-1,2\right\rangle ,\ \vec{v}_{_{3}}=\left\langle 0,1,-1\right\rangle$

	9	9	ע
16	. อส์	ระเท่ง	มเส้น

เวกเตอร์ $\vec{v}_1,\,\vec{v}_2,\,\vec{v}_3,...,\vec{v}_n$ เป็นอิสระเชิงเส้นก็ต่อเมื่อ ถ้า $c_1\vec{v}_1+c_2\vec{v}_2+c_3\vec{v}_3,...,c_n\vec{v}_n=\vec{0}$ แล้ว $c_1=c_2=c_3=...=c_n=0$

	ตัวอย่าง 16.1	จงพิจารณาว่า	$\langle 2, 1, 0 \rangle, \langle 1, 2 \rangle$	$\left\langle 0,1, ight.$ ແລະ $\left\langle 0,1, ight.$	-1 ig angle เป็นอิสระเชิงเ	ส้นหรือไม่
•••••						
•••••						
•••••				•••••		
				•••••		
•••••						
•••••						
••••••	ตัวอย่าง 16.2	จงพิจารณาว่า	$\langle 3, 2, -5 \rangle, \langle 2 \rangle$	$\langle 2,6,-1 angle$ ແລະ \langle	$\left\langle -1,0,2 ight angle$ เป็นอิสระ	ะเชิงเส้นหรือไม่
				• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••