แผนบริหารการสอนประจำบทที่ 3

วิชา 4114501 การวิจัยดำเนินงาน แผนบริหารการสอน บทที่ 3 ปัญหาควบคู่และการวิเคราะห์ความไว ต่อการเปลี่ยนแปลง

เวลา 3 ชั่วโมง

สาระสำคัญ

ศึกษาปัญหาที่มีความสัมพันธ์กับปัญหาเดิม (Primal Problem) ซึ่งจะเรียกว่าปัญหาควบคู่ (Dual Problem) ซึ่งปัญหาทั้งสองนี้จะมีเป้าหมายที่ตรงข้ามกันเสมอ รวมทั้งเมื่อมีการ เปลี่ยนแปลงของปัญหาต้องมีการหาผลกระทบของปัญหาที่เรียกว่าการวิเคราะห์ความไวต่อ การเปลี่ยนแปลง

ผลการเรียนรู้ที่คาดหวัง

นักศึกษาสามารถทราบขั้นตอนการสร้างปัญหาควบคู่จากปัญหาเดิมรวมทั้งสามารถ วิเคราะห์การเปลี่ยนแปลงไปของคำตอบที่ดีที่สุดของปัญหากำหนดการเชิงเส้น (Linear Programming) เมื่อเกิดการเปลี่ยนแปลงในลักษณะต่างๆซึ่งเรียกว่าการวิเคราะห์ความไวต่อ การเปลี่ยนได้

จุดประสงค์การเรียนรู้

- 1. สามารถทราบขั้นตอนการสร้างปัญหาควบคู่จากปัญหาเดิม
- 2. สามารถวิเคราะห์การเปลี่ยนแปลงไปของคำตอบที่ดีที่สุดของปัญหากำหนดการเชิง เส้น เมื่อเกิดการเปลี่ยนแปลงในลักษณะต่างๆซึ่งเรียกว่าการวิเคราะห์ความไวต่อการเปลี่ยนได้

กิจกรรมการเรียนการสอน

- 1. นำเสนอ Power Point เนื้อหาเกี่ยวกับปัญหาควบคู่และการวิเคราะห์ความไวต่อการ เปลี่ยนแปลงจากเอกสารคำสอนการวิจัยดำเนินงาน
- 2. ฝึกใช้โปรแกรมคอมพิวเตอร์ในการแก้ปัญหาควบคู่และการวิเคราะห์ความไวต่อการ เปลี่ยนแปลง
 - 3. นักศึกษาทำแบบฝึกหัดท้ายบท

สื่อการเรียนรู้

- 1. Power Point
- 2. โปรแกรมสำเร็จรูป Lindo

การวัดและประเมินผล

1. การวัดผล

- 1.1 การเข้าชั้นเรียนตรงต่อเวลา
- 1.2 การถามและตอบคำถามในชั้นเรียน
- 1.3 การสังเกตการเข้าร่วมกิจกรรมกลุ่ม
- 1.4 การทำแบบฝึกหัดท้ายบท

2. การประเมินผล

- 2.1 ทำกิจกรรมกลุ่มเสร็จตามเวลาที่กำหนด
- 2.2 ทำแบบฝึกหัดท้ายบทด้วยตนเอง
- 2.3 แบบฝึกหัดที่ทำมีความถูกต้องร้อยละ 80

บทที่ 3

ปัญหาควบคู่และการวิเคราะห์ความไวต่อการเปลี่ยนแปลง

จากบทที่ 2 กำหนดการเชิงเส้นเราจะพบว่าในแต่ละปัญหาจะมีรูปแบบของปัญหาที่มี ความสัมพันธ์กับปัญหาเดิม (Primal Problem) เสมอ ซึ่งจะเรียกว่าปัญหาควบคู่ (Dual Problem) ซึ่งปัญหาทั้งสองนี้จะมีเป้าหมายที่ตรงข้ามกันเสมอ เช่น ถ้าปัญหาเดิมมีเป้าหมาย สูงสุด ปัญหาควบคู่ก็จะมีเป้าหมายต่ำสุด โดยที่การสร้างปัญหาควบคู่ขึ้นก็เพื่อช่วยลดเวลาใน การคำนวณ เช่น ปัญหาเดิมมี 6 ตัวแปร 2 ข้อจำกัด ไม่สามารถใช้วิธีกราฟแก้ปัญหาได้ เนื่องจากมีตัวแปรมากกว่า 2 ตัว เมื่อเปลี่ยนเป็นปัญหาควบคู่จะสามารถใช้วิธีกราฟได้ หรือ สามารถนำปัญหาควบคู่ไปใช้อธิบายในเรื่องการวิเคราะห์ความไว กรณีที่มีค่าสัมประสิทธิ์ เปลี่ยนไปหรือเพิ่ม/ลด ตัวแปรในปัญหาโปรแกรมเชิงเส้นได้

ปัญหาควบคู่

1. ขั้นตอนการสร้างปัญหาควบคู่จากปัญหาเดิม

- 1. ข้อจำกัดของปัญหาเดิม = จำนวนตัวแปรในปัญหาควบคู่
 จำนวนตัวแปรในปัญหาเดิม = จำนวนข้อจำกัดของปัญหาควบคู่
- 2. ค่าคงที่ขวามือของข้อจำกัดในปัญหาเดิมจะเป็นสัมประสิทธิ์ของตัวแปรควบคู่ใน สมการเป้าหมายและสัมประสิทธิ์ของตัวแปรในสมการเป้าหมายเดิมจะเป็นค่าคงที่ขวามือของ ปัญหาควบคู่
- 3. ถ้าเป้าหมายเดิมคือ หาค่าสูงสุด (Maximize) ————> ฟังก์ชันเป้าหมาย ควบคู่คือหาค่าต่ำสุด (Minimize)

เป้าหมายเดิมคือ หาค่าต่ำสุด (Minimize) —> ฟังก์ชันเป้าหมาย ควบคู่คือหาค่าสูงสุด (Maximize)

 ถ้าสมการเป้าหมายควบคู่ คือ หาค่าสูงสุด (Maximize) ดังนั้นสมการ ข้อจำกัดจะอยู่ในรูปเครื่องหมาย ≤

สมการเป้าหมายควบคู่ คือ หาค่าต่ำสุด (Maximize) ดังนั้นสมการข้อจำกัดจะอยู่ ในรูปเครื่องหมาย ≥

5. ตัวแปรของปัญหาเดิมและปัญหาควบคู่จะต้องไม่เป็นลบ

2. รูปแบบของปัญหาควบคู่และปัญหาเดิม

สำหรับรูปแบบของปัญหาทั้งสองสามารถแสดงได้ดังตารางที่ 3.1

ตารางที่ 3.1 แสดงรูปแบบของปัญหาควบคู่และปัญหาเดิม

รูปแบบปัญหาเดิม	รูปแบบของปัญหาควบคู่
(Type Of Primal Problem)	(Type Of Dual Problem)
้ เป้าหมายคือการหาค่าสูงสุด (หาค่าต่ำสุด)	เป้าหมายคือการหาค่าต่ำสุด (หาค่าสูงสุด)
มีข้อจำกัด M ข้อ	มีข้อจำกัด N ข้อ
มีตัวแปร N ตัว (X ₁ , X ₂ , , X _n)	มีตัวแปร M ตัว (Y ₁ , Y ₂ , , Y _n)
สัมประสิทธิ์ของตัวแปรในสมการเป้าหมาย (C_1 , C_2 , , C_n)	สัมประสิทธิ์ของตัวแปรในสมการเป้าหมายของ ปัญหาเดิมจะกลายเป็นค่าขวามือของข้อจำกัด ของปัญหาควบคู่
ค่าทางขวามือของข้อจำกัด (B ₁ , B ₂ , , B _m)	ค่าทางขวามือของข้อจำกัดของปัญหาเดิมจะ กลายเป็นค่าสัมประสิทธิ์ของตัวแปรในสมการ เป้าหมายของปัญหาควบคู่
สัมประสิทธิ์ของตัวแปรตามในแนวตั้ง	สัมประสิทธิ์ของตัวแปรตามในแนวตั้งในข้อจำกัด ของปัญหาเดิมจะกลายเป็นสัมประสิทธิ์ของตัว แปรตามแถวนอนในปัญหาควบคู่
ตัวแปรทุกตัวต้องมีค่ามากกว่าหรือเท่ากับศูนย์	ตัวแปรทุกตัวต้องมีค่ามากกว่าหรือเท่ากับศูนย์
$X_1, X_2,, X_n \ge 0$	$Y_1, Y_2,, Y_n \ge 0$

ลักษณะการเขียนรูปแบบของปัญหาทั้งสองสามารถแสดงได้ดังนี้

ปัญหาเดิม Maxz =
$$C_1x_1 + C_2x_2 + C_3x_3$$

Subject To:

$$A_{11}X_1 + A_{12}X_2 + A_{13}X_3 \le B_1$$

$$A_{21}X_1 + A_{22}X_2 + A_{23}X_3 \le B_2$$

$$A_{31}X_1 + A_{32}X_2 + A_{33}X_3 \le B_3$$

$$X_1, X_2, ..., X_n \ge 0$$

สามารถสร้างปัญหาควบคู่ของกำหนดการเชิงเส้นข้างต้นได้ดังนี้

ปัญหาควบคู่ Minz =
$$B_1y_1 + B_2y_2 + B_3y_3$$

Subject To:

$$A_{11}y_1 + A_{21}y_2 + A_{31}y_3 \ge C_1$$

$$A_{12}y_1 + A_{22}y_2 + A_{32}y_3 \ge C_2$$

$$A_{13}y_1 + A_{23}y_2 + A_{33}y_3 \ge C_3$$

$$Y_1, Y_2, ..., Y_n \ge 0$$

ตัวอย่างที่ 3.1 จงแปลงรูปปัญหาเดิมต่อไปนี้ให้เป็นปัญหาควบคู่

ปัญหาเดิม (Primal Problem)

$$Maxz = 5x_1 + 7x_2 + 3x_3$$

Subject To:
$$2x_1 + 5x_2 + X_3 \le 6$$

$$X_1 + 3x_2 + 7x_3 \le 2$$

$$4x_1 + X_2 + 6x_3 \le 8$$

$$X_1, X_2, X_3 \ge 0$$

สามารถแปลงให้เป็นปัญหาควบคู่ ได้ดังนี้

Minz =
$$6y_1 + 2y_2 + 8y_3$$

Subject To:
$$2y_1 + 1y_2 + 4 Y_3 \ge 5$$

$$5y_1 + 3y_2 + 1y_3 \ge 7$$

$$Y_1 + 7y_2 + 6y_3 \ge 3$$

$$Y_1, Y_2, Y_3 \ge 0$$

ตัวอย่างที่ 3.2 โรงงานผลิตคอนกรีตสำเร็จรูปแห่งหนึ่งมีสูตรที่ใช้ในการผสมคอนกรีต 2 สูตร คือ สูตรที่ 1 และสูตรที่ 2 ซึ่งต้องใช้ส่วนผสมของวัตถุดิบ 3 ชนิด คือ ปูนซีเมนต์ หิน และ ทรายในปริมาณที่ต่างกันดังนี้

	คอนกรีตสูตรที่ 1	คอนกรีตสูตรที่ 2	ปริมาณวัตถุดิบที่
	(หน่วย : ลูกบาศก์	(หน่วย : ลูกบาศก์เมตร/	หาได้สูงสุด
	เมตร/คอนกรีต 1 ตัน)	คอนกรีต 1 ตัน)	(หน่วย : ลูกบาศก์
			เมตร)
ปูนซีเมนต์	2	3	45
หิน	8	6	51
ทราย	5	4	63
กำไร	40	60	
(หน่วย : พันบาท)			

- ก. จากปัญหานี้หากผู้จัดการฝ่ายผลิตต้องการทราบว่า จะต้องทำการผลิตคอนกรีตสูตร
 ที่ 1 และสูตรที่ 2 จำนวนกี่ตันในขณะที่วัตถุดิบมีอยู่อย่างจำกัด จะเขียนเป็นตัวแบบ
 กำหนดการเชิงเส้นอย่างไร
- ข. จากปัญหาเดิมในข้อ ก จงเขียนปัญหาควบคู่
 วิธีทำ ก. กำหนดตัวแปรที่ต้องทำการตัดสินใจ ดังนี้

X₁ แทน ปริมาณการผลิตคอนกรีตสูตรที่ 1

X₂ แทน ปริมาณการผลิตคอนกรีตสูตรที่ 2

สมการเป้าหมาย : Max Z = $40x_1 + 60x_2$ (พันบาท)

ข้อจำกัด :

2x₁ + 3x₂ ≤ 45 (ปูนซีเมนต์)

 $8x_1 + 6x_2 \le 51$ (หิน)

5x₁ + 4x₂ ≤ 63 (ทราย)

ข้อกำหนด : X_1 , $X_2 \ge 0$

ข. จากปัญหาเดิมในข้อ ก สามารถโยงความสัมพันธ์เป็นปัญหาควบคู่ได้ดังต่อไปนี้ กำหนดตัวแปรที่ต้องทำการตัดสินใจ ดังนี้

Y₁ แทน ราคาปูนซีเมนต์ต่อลูกบาศก์เมตร (พันบาทต่อลูกบาศก์เมตร)

 \mathbf{Y}_2 แทน ราคาหินต่อลูกบาศก์เมตร (พันบาทต่อลูกบาศก์เมตร)

Y₃ แทน ราคาทรายต่อลูกบาศก์เมตร (พันบาทต่อลูกบาศก์เมตร)
จากปัญหาเดิมเป็นปัญหาสูงสุด ดังนั้นปัญหาควบคู่จะเป็นการพิจารณาค่าต่ำสุด
โดยจะเป็นการพิจารณาว่าราคาของวัตถุดิบแต่ละชนิดควรเป็นอย่างไร จึงจะได้ต้นทุนการผลิต
ที่ต่ำที่สุด สามารถเขียนเป็นปัญหาควบคู่ได้ดังนี้

สมการเป้าหมาย : Min Z = 45y₁ + 51y₂ + 63y₃ (พันบาท) ข้อจำกัด :

$$2y_1 + 8y_2 + 5y_3 \ge 40$$
 (กำไรคอนกรีตสูตรที่ 1)

$$3y_1 + 6y_2 + 4y_3 ≥ 60 (กำไรคอนกรีตสูตรที่ 2)$$

ข้อกำหนด : X_1 , $X_2 \ge 0$

3. ประโยชน์ของปัญหาควบคู่

จากการอธิบายในปัญหาควบคู่ สามารถสรุปประโยชน์ของปัญหาควบคู่ได้ดังนี้

- 3.1 ในกรณีที่การแก้ปัญหากำหนดการเชิงเส้นที่มีจำนวนเงื่อนไขข้อจำกัด มากกว่าจำนวนตัวแปรมาก ๆ จะทำให้การคำนวณค่อนข้างยุ่งยาก เมื่อเปลี่ยนเป็นปัญหา ควบคู่จะทำให้จำนวนเงื่อนไขข้อจำกัดลดลง จึงทำให้การคำนวณง่ายขึ้น
- 3.2 ช่วยในการตัดสินใจ เนื่องจากปัญหาควบคู่สามารถอธิบายถึงลักษณะของ ปัญหาด้านเศรษฐศาสตร์ได้
- 3.3 ช่วยในการพิจารณาการเปลี่ยนแปลงค่าบางค่าในปัญหาเดิม (การวิเคราะห์ ความไวต่อการเปลี่ยนแปลง)

การวิเคราะห์ความไวต่อการเปลี่ยนแปลง (Sensitivity Analysis)

จากข้อสมมติข้อหนึ่งของกำหนดการเชิงเส้นกล่าวไว้ว่าตัวเลขข้อมูลต่าง ๆ ที่ใช้ในการ สร้างตัวแบบกำหนดการเชิงเส้นนั้นจะต้องทราบค่าแน่ชัด แต่ในความเป็นจริงแล้วพบว่าเป็น การยากที่พารามิเตอร์ต่าง ๆ ที่ใช้ในกำหนดการเชิงเส้นจะเป็นตัวเลขที่แน่นอนหรือคงที่ ด้วย เหตุนี้ตัวเลขส่วนใหญ่ที่ได้มาจึงเป็นค่าประมาณหรือค่าเฉลี่ย ด้วยเหตุนี้เราจึงต้องมีการ วิเคราะห์ว่าตัวเลขของสัมประสิทธิ์ในสมการเป้าหมายสามารถเปลี่ยนแปลงได้อย่างไร หรือ วิเคราะห์ค่าทางทางขวามือของเงื่อนไขว่าสามารถเปลี่ยนแปลงได้มากน้อยเพียงไร จึงจะไม่ทำ ให้คำตอบที่ดีสุดของปัญหาเปลี่ยนแปลง ดังนั้นจึงสามารถสรุปได้ว่าการวิเคราะห์ความไวต่อ การเปลี่ยนแปลงคือ การศึกษาหรือการวิเคราะห์การเปลี่ยนแปลงไปของคำตอบที่ดีที่สุดของ ปัญหากำหนดการเชิงเส้น (Linear Programming) เมื่อเกิดการเปลี่ยนแปลงในลักษณะต่อไปนี้

- 1. การเปลี่ยนแปลงของค่าสัมประสิทธิ์ในสมการเป้าหมาย
- 2. การเปลี่ยนแปลงเงื่อนไขข้อจำกัดทางด้านทรัพยากร
- 3. การเปลี่ยนแปลงค่าสัมประสิทธิ์ในเงื่อนไขข้อจำกัด
- 4. การเปลี่ยนแปลงของจำนวนสมการข้อบังคับ
- 5. การเปลี่ยนแปลงของจำนวนตัวแปร

1. การวิเคราะห์ความไวต่อการเปลี่ยนแปลงด้วยวิธีกราฟ

จากรูปแบบทั่วไปของกำหนดการเชิงเส้น จะเป็นดังนี้ สมการเข้าหมาย :

Max/Min
$$Z = C_1x_1 + C_2x_2 + C_3x_3 + ... + C_nx_n$$

การเปลี่ยนแปลงของสัมประสิทธิ์ C₁ และ C₂ จะส่งผลทำให้สมการเส้นตรงของ ฟังก์ชั่นวัตถุประสงค์เปลี่ยนแปลงไป เช่น ความชัน และจุดตัด หากไม่มีการควบคุมจะทำให้ ค่าของวัตถุประสงค์เปลี่ยนแปลงไป เช่น กำไรสูงสุดหรือต้นทุนต่ำสุด การวิเคราะห์ความไว ต่อการเปลี่ยนแปลงจะทำให้ทราบว่าค่าของสัมประสิทธิ์สามารถเปลี่ยนแปลงได้อย่างไร โดยที่ ค่าของตัวแปรที่ต้องตัดสินใจยังเป็นค่าเดิมและให้ผลของการตัดสินใจเป็นค่าเดิม

ตัวอย่างที่ 3.3 บริษัท Jog ผลิตสี 2 ชนิด คือ สีทาภายนอกและสีทาภายใน จากวัตถุดิบ A₁ และ วัตถุดิบ A₂ ดังตาราง

ชนิดของวัตถุดิบ	น้ำหนักของวัตถุดิบต่อน้ำหนักของสี		ปริมาณวัตถุดิบที่หาได้
	(ตัน)		
	สีทาภายนอก สีทาภายใน		
วัตถุดิบ A₁	6	4	24
วัตถุดิบ A_2	1	2	6
ผลกำไรต่อตัน	5	4	
(หน่วย : พันบาท)			

จากการสำรวจตลาด พบว่า ความต้องการสูงสุดต่อวันของสีทาภายในไม่เกิน 2 ตัน และความต้องการสีทาภายในจะไม่มากเกินกว่า 1 ตันของสีทาภายนอก บริษัทต้องการหา ปริมาณการผลิตของสีทาภายในและสีทาภายนอกที่ให้กำไรรวมสูงที่สุด

วิธีทำ กำหนดตัวแปรที่ต้องทำการตัดสินใจ ดังนี้

X₁ แทน ปริมาณการผลิตสีทาภายนอก (ตัน)

X₂ แทน ปริมาณการผลิตสีทาภายใน (ตัน

สมการเป้าหมาย : $Max Z = 5x_1 + 4x_2$ (พันบาท)

ข้อจำกัด :

$$6x_1 + 4x_2 \le 24$$

$$X_1 + 2X_2 \leq 6$$

$$X_2 \leq 2$$

$$X_2 - X_1 \leq 1$$

ข้อกำหนด : X_1 , X_2 ≥ 0

ทำการแก้ปัญหากำหนดการเชิงเส้นโดยใช้กราฟ ดังนี้

จากสมการ $6x_1 + 4x_2 = 24$

หาจุดตัดแกน X_1 ให้ $X_2 = 0$ ดังนี้

$$6x_1 + 4(0) = 24$$

$$X_1 = 4$$

จะได้จุดตัดแกน X₁ คือ (4,0)

หาจุดตัดแกน X_2 ให้ $X_1=0$ ดังนี้

$$6(0) + 4x_2 = 24$$

$$X_2 = 6$$

จะได้จุดตัดแกน X₂ คือ (0,6)

จากสมการ $X_1 + 2x_2 = 6$

หาจุดตัดแกน X_1 ให้ $X_2 = 0$ ดังนี้

$$X_1 + 2(0) = 6$$

$$X_1 = 6$$

จะได้จุดตัดแกน X₁ คือ (6,0)

หาจุดตัดแกน X_2 ให้ $X_1 = 0$ ดังนี้

$$0 + 2x_2 = 6$$

$$X_2 = 3$$

จะได้จุดตัดแกน X_2 คือ (0,3)

จากสมการ $X_2 = 2$

จะได้จุดตัดแกน X₂ คือ (0,2)

จากสมการ $X_2 - X_1 = 1$

หาจุดตัดแกน X_1 ให้ $X_2=0$ ดังนี้

$$0 - X_1 = 1$$

$$X_1 = -1$$

จะได้จุดตัดแกน X₁ คือ (-1,0)

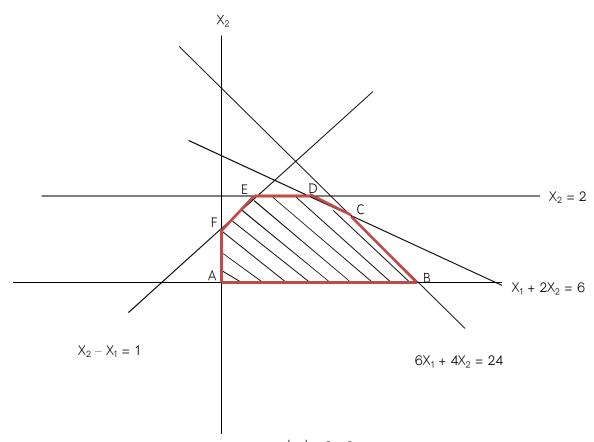
หาจุดตัดแกน X_2 ให้ $X_1 = 0$ ดังนี้

$$X_2 - 0 = 1$$

$$X_2 = 1$$

จะได้จุดตัดแกน X₂ คือ (0,1)

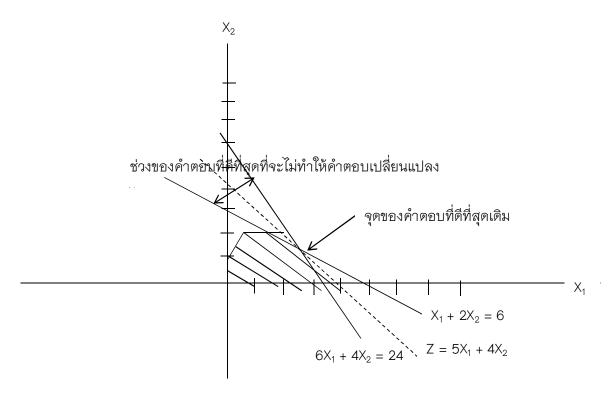
จะได้กราฟแสดงคำตอบที่ดีที่สุดดังภาพประกอบ 3.1



ภาพประกอบ 3.1 แสดงการหาคำตอบที่ดีที่สุดโดยใช้กราฟ

จากฟังก์ชันวัตถุประสงค์ พบว่าจุด C เป็นจุดที่ให้คำตอบที่ดีที่สุดคือ $X_1=3$ และ $X_2=1.5$ โดยจะได้ค่า Z=21

การวิเคราะห์ความไวต่อการเปลี่ยนแปลงเพื่อต้องการทราบว่าช่วงในการเปลี่ยนแปลง ของสัมประสิทธิ์มีการเปลี่ยนแปลงมากน้อยเพียงใด หรือในความหมายของปัญหาก็คือ กำไร ที่ได้จากการขายนั่นเอง ซึ่งการเปลี่ยนแปลงที่เกิดขึ้นจะไม่ทำให้คำตอบหรือจุดที่ดีที่สุด (Optimum) เปลี่ยนแปลงไปดังแสดงในภาพประกอบ 3.2



ภาพประกอบ 3.2 แสดงช่วงคำตอบที่ดีที่สุดที่จะไม่ทำให้คำตอบเปลี่ยนแปลงไป

จากภาพประกอบ 3.1 จะเห็นได้ว่าความเปลี่ยนแปลงของสมการเส้นตรงในสมการ เป้าหมายจะอยู่ระหว่างเส้นตรง $6x_1 + 4x_2 = 24$ และสมการเส้นตรง $X_1 + 2x_2 = 6$ จากฟังก์ชันวัตถุประสงค์ $Max\ Z = C_1x_1 + C_2x_2$ สามารถเขียนเป็นความสัมพันธ์ได้ว่า

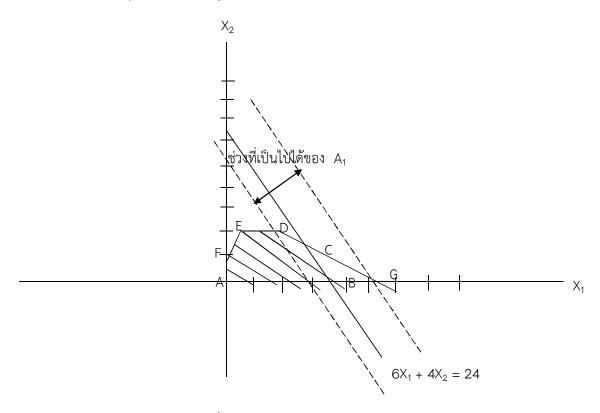
$$\frac{4}{6} \le \frac{C_{2}}{C_{1}} \le \frac{2}{1} \quad \text{เมื่อ} \quad C_{1} \neq 0 \quad \text{หรือ}$$

$$\frac{1}{2} \le \frac{C_{1}}{C_{2}} \le \frac{6}{4} \quad \text{เมื่อ} \quad C_{2} \neq 0$$

การเปลี่ยนแปลงของค่าทางขวามือในเงื่อนไขของขอบข่าย

ในการวิเคราะห์ส่วนนี้จะทำการวิเคราะห์ว่าทรัพยากรที่มีอยู่นั้นสามารถเปลี่ยนแปลง ได้อย่างไรบ้าง และการเปลี่ยนแปลงที่เกิดขึ้นจะส่งผลให้คำตอบหรือกำไรมีการเปลี่ยนแปลงได้ อย่างไร จากตัวอย่างนี้ทรัพยากรก็คือ วัตถุดิบ A₁ และ วัตถุดิบ A₂

โดยวัตถุดิบ A_1 จะขึ้นอยู่กับเส้นตรง $6x_1 + 4x_2 \le 24$ ดังภาพประกอบ 3.3



ภาพประกอบ 3.3 แสดงช่วงที่เป็นไปได้ของ A₁

จากเส้นตรง $6x_1 + 4x_2 = 24$ มีความสัมพันธ์กับวัตถุดิบ A_1 สังเกตช่วงของ การเปลี่ยนแปลงในวัตถุดิบ A_1 ที่สามารถเปลี่ยนแปลงได้ภายใต้บริเวณที่เป็นไปได้ของ คำตอบที่ค่าต่ำที่สุดคือ 20 ตัน และค่าสูงสุดคือ 36 ตัน ดังภาพประกอบ 3.3 โดยที่ค่าของคำตอบเดิมวัตถุดิบ A_1 จะอยู่ที่ 24 ตัน จากการวิเคราะห์จะทำให้ทราบ ว่าค่าของวัตถุดิบ A_1 ที่เปลี่ยนแปลงไปในแต่ละ 1 ตัน ไม่ว่าจะเพิ่มขึ้นหรือลดลงจะมี ผลอย่างไรต่อคำตอบหรือกำไรจากการผลิต

กำหนดให้ Y_1 คือ อัตราการเปลี่ยนแปลงของกำไรต่อวัตถุดิบ A_1

$$Z$$
 ที่จุด D = 5(2) + (4)(2) = 18 (พันบาท)

$$Z$$
 ที่จุด $G = 5(6) + (4)(0) = 30$ (พันบาท)

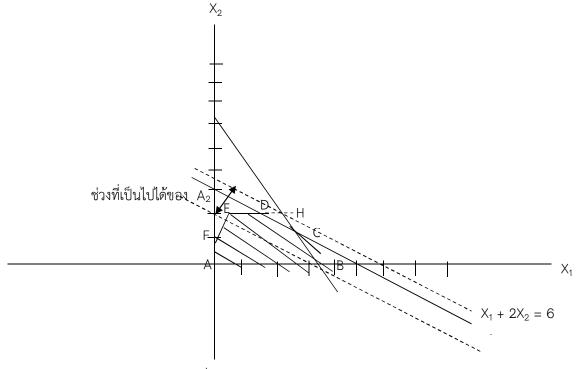
และจาก $6x_1 + 4x_2 \le A_1$ พบว่าถ้าแทนค่าที่จุด D และ G จะได้

$$A_1$$
 ที่จุด $G = 6(6) + (4)(0) = 36$ (ตัน)

$$\therefore$$
 Y = $\frac{30-18}{36-20}$ = 0.75 (พันบาทต่อตันของวัตถุดิบ A₁)

สรุปได้ว่าช่วงการเปลี่ยนแปลงคือ $20 \le A_1 \le 36$ ไม่ว่าจะเพิ่มขึ้นหรือลดลงจาก 24 ตัน แต่ละ 1 ตันของวัตถุดิบ A_2 จะทำให้กำไรเพิ่มขึ้นหรือลดลงเป็น 0.75 (พันบาทต่อตันของวัตถุดิบ A_1)

สำหรับวัตถุดิบ A_2 จะขึ้นอยู่กับเส้นตรง $X_1+2x_2 \le 6$ ดังภาพประกอบ 3.4



ภาพประกอบ 3.4 แสดงช่วงที่เป็นไปได้ของ A₂

จากเส้นตรง $X_1 + 2x_2 \le 6$ มีความสัมพันธ์กับวัตถุดิบ A_2 สังเกตช่วงของการ เปลี่ยนแปลงในวัตถุดิบ A_2 ที่สามารถเปลี่ยนแปลงได้ภายใต้บริเวณที่เป็นไปได้ของคำตอบที่ค่า ต่ำที่สุดคือ 4 ตัน และค่าสูงสุดคือ $\frac{20}{3}$ ตัน ดังภาพประกอบ 3.4 โดยที่ค่าของคำตอบ เดิมวัตถุดิบ A_2 จะอยู่ที่ 6 ตัน จากการวิเคราะห์จะทำให้ทราบว่าค่าของวัตถุดิบ A_2 ที่ เปลี่ยนแปลงไปในแต่ละ 1 ตัน ไม่ว่าจะเพิ่มขึ้นหรือลดลงจะมีผลอย่างไรต่อคำตอบหรือกำไร จากการผลิต

กำหนดให้ Y_2 คือ อัตราการเปลี่ยนแปลงของกำไรต่อวัตถุดิบ A_2

$$Y_2 = rac{ nารเปลี่ยน Z จากจุด B ถึง H }{ nารเปลี่ยน A_2 จากจุด B ถึง H$$

เมื่อ B = (4,0) และ H =
$$(\frac{8}{-},2)$$
 ดังนั้น

$$Z$$
 ที่จุด B = 5(4) + (4)(0) = 20 (พันบาท)

Z ที่จุด H =
$$5(\frac{8}{3})$$
 + (4)(2) = $\frac{40}{3}$ + $8 = \frac{40}{3} + \frac{24}{3} = \frac{64}{3} = 21.333$ (พันบาท)

และจาก $X_1 + 2x_2 \le A_2$ พบว่าถ้าแทนค่าที่จุด B และ H จะได้

$$A_2$$
 ที่จุด B = 4 + (2)(0) = 4 (ตัน

$$A_2$$
 ที่จุด $H = \frac{8}{3} + (2)(2) = \frac{20}{3} = 6.667$ (ตัน)

∴
$$Y_{_2} = \frac{21.333-20}{6.667-4} = \frac{1.333}{2.667} = 0.4998 ≈ 0.5 (พันบาทต่อตันของวัตถุดิบ A_2)$$

สรุปได้ว่าช่วงการเปลี่ยนแปลงคือ $4 \le A_2 \le 6.667$ ไม่ว่าจะเพิ่มขึ้นหรือลดลงจาก 6 ตัน แต่ละ 1 ตันของวัตถุดิบ A_2 จะทำให้กำไรเพิ่มขึ้นหรือลดลงเป็น 0.5 (พันบาทต่อตัน ของวัตถุดิบ A_2)

หมายเหตุ การวิเคราะห์ความไวต่อการเปลี่ยนแปลงโดยวิธีกราฟจะใช้ในกรณีที่ ปัญหามีตัวแปรที่ต้องตัดสินใจ 2 ตัวแปร และมีเงื่อนไขข้อจำกัดน้อยกว่า แต่หากว่ามีตัวแปร ที่ต้องตัดสินใจมากกว่า 2 ตัวแปร และมีเงื่อนไขข้อจำกัดมากข้อ จะวิเคราะห์ความไวต่อการ เปลี่ยนแปลงยาก โดยทั่วไปจึงนิยมใช้โปรแกรมคอมพิวเตอร์เมื่อทำการวิเคราะห์ความไวต่อ การเปลี่ยนแปลง

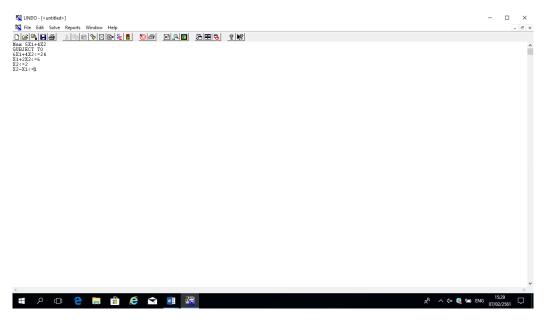
การวิเคราะห์ความไวต่อการเปลี่ยนแปลงโดยการวิเคราะห์ผลจาก คอมพิวเตอร์

การวิเคราะห์ความไวต่อการเปลี่ยนแปลงของตัวแบบกำหนดการเชิงเส้นโดยการ วิเคราะห์ผลจากคอมพิวเตอร์ในบทนี้จะกล่าวถึงโปรแกรม Lindo ซึ่งสามารถพิจารณาได้จาก ผลลัพธ์ในส่วนสุดท้ายใต้บรรทัด Ranges In Which The Basis Is Unchanged ลงไป ซึ่ง จะแบ่งเป็น 2 ช่วง คือ

- 1.1 Obj Cofficient Ranges จะใช้ในการวิเคราะห์ผลกระทบของการ เปลี่ยนแปลงสัมประสิทธิ์ของตัวแปรในฟังก์ชันวัตถุประสงค์ที่ส่งผลถึงผลลัพธ์ที่เหมาะสมที่สุด และค่าเป้าหมาย (Objective Function Value) ระบุพิสัยหรือช่วง (Range) ของการ เปลี่ยนแปลงสัมประสิทธิ์ที่จะไม่ทำให้ผลลัพธ์ที่เหมาะสมที่สุดเปลี่ยนแปลง
- 1.2 Righthand Side Ranges จะใช้ในการวิเคราะห์ผลกระทบของการ เปลี่ยนแปลงและค่าเป้าหมายค่าทางขวามือของฟังก์ชันเงื่อนไขบังคับที่ส่งผลถึงผลลัพธ์ที่ เหมาะสมที่สุด ในส่วนนี้จะระบุพิสัยหรือช่วงของการเปลี่ยนแปลงค่าทางขวามือที่ยังคงใช้ค่า ดูอัลไพรซ์คำนวณการเปลี่ยนแปลงของค่าเป้าหมายได้ (สุทธิมา ชำนาญเวช, 2557, หน้า 98)

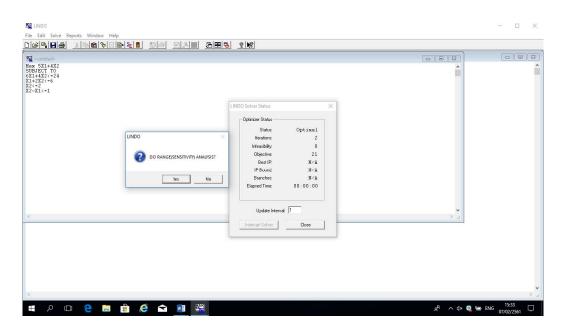
ตัวอย่างที่ 3.4 จากตัวอย่างที่ 3.3 ทำการวิเคราะห์ความไวต่อการเปลี่ยนแปลงโดยการ วิเคราะห์ผลจากโปรแกรม Lindo ดังนี้

ขั้นตอนที่ 1 น้ำตัวแบบกำหนดการเชิงเส้นพิมพ์ลงไปในโปรแกรม Lindo โดยในการ พิมพ์ฟังก์ชันสมการเป้าหมายของปัญหากำหนดการเชิงเส้น ให้พิมพ์ Max หรือพิมพ์คำเต็ม คือ Maximize $5x_1 + 4x_2$ เพื่อสั่งให้โปรแกรมคำนวณหาค่าสูงสุดโดยไม่ต้องพิมพ์คำว่า Total Profit และพิมพ์ฟังก์ชันข้อจำกัด ดังภาพประกอบ 3.5

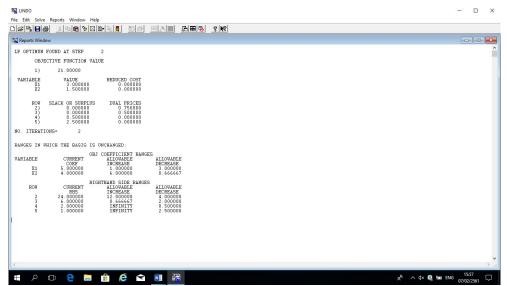


ภาพประกอบ 3.5 แสดงการพิมพ์ตัวแบบกำหนดการเชิงเส้นพิมพ์ลงไปในโปรแกรม Lindo

ข*ั้นตอนที่ 2* สั่งให้โปรแกรมทำการคำนวณ โดยคลิกเลือก Solve โปรแกรมจะ ถามว่าต้องการให้แสดงพิสัยของความไวต่อการเปลี่ยนแปลง (Sensitivity Range) หรือไม่ ดังภาพประกอบ 3.6



ภาพประกอบ 3.6 แสดง Lindo Solver Status



ขั้นตอนที่ 3 คลิก Yes จะได้ผลลัพธ์ดังภาพประกอบ 3.7

ภาพประกอบ 3.7 แสดงผลลัพธ์ที่ได้จากโปรแกรม Lindo (Lindo Solution)

จากภาพประกอบ 3.7 แบ่งเป็น 2 ส่วนคือ ส่วนแรกใต้ข้อความ Obj Coefficient Ranges เป็นข้อมูลสำหรับการวิเคราะห์การเปลี่ยนแปลงของกำไรหรือต้นทุน ส่วนที่สองอยู่ ภายใต้ข้อความ Righthand Side Ranges เป็นข้อมูลสำหรับการวิเคราะห์การเปลี่ยนแปลงของ จำนวนทรัพยากร

ข้อมูลสำหรับการวิเคราะห์การเปลี่ยนแปลงของกำไรหรือต้นทุน (Obj Coefficient Ranges) ประกอบด้วย 4 สดมภ์ (Column) คือ

Variable คือ ชื่อตัวแปรในฟังก์ชันสมการเป้าหมาย

Current คือ ค่าสัมประสิทธิ์ของตัวแปรในปัจจุบันของฟังก์ชันสมการ เป้าหมายในตัวแบบ

Allowable Increase คือ ค่าที่สัมประสิทธิ์ของตัวแปรสามารถเพิ่มได้อีกโดยไม่ทำ ให้คำตอบที่ดีที่สุดเปลี่ยนแปลงไป

Allowable Decrease คือ ค่าที่สัมประสิทธิ์ของตัวแปรสามารถลดได้อีกโดยไม่ทำให้ คำตอบที่ดีที่สุดเปลี่ยนแปลงไป

ข้อมูลสำหรับการวิเคราะห์ความเปลี่ยนแปลงของจำนวนทรัพยากรประกอบด้วย 4 สดมภ์ (Column) เช่นกัน คือ

Row คือ เลขแถวของสมการข้อบังคับ

Current Rhs คือ ค่าคงที่ทางขวามือของสมการข้อบังคับใน

ปัจจุบัน

Allowable Increase คือ ค่าคงที่ทางขวามือสามารถเพิ่มขึ้นได้โดยไม่ทำให้มูลค่า ทรัพยากร (Dual Price) เปลี่ยนแปลงไป

Allowable Decrease คือ ค่าคงที่ทางขวามือสามารถลดลงได้โดยไม่ทำให้ มูลค่าทรัพยากร (Dual Price) เปลี่ยนแปลงไป

จากภาพประกอบ 3.7 จะแสดงให้เห็นการเปลี่ยนแปลงของผลลัพธ์เมื่อมีการ เปลี่ยนแปลงข้อมูล 2 รูปแบบ คือ

1) เมื่อมีการเปลี่ยนแปลงสัมประสิทธิ์ของตัวแปรในฟังก์ชันวัตถุประสงค์ การเปลี่ยนแปลงสัมประสิทธิ์ของตัวแปรในฟังก์ชันวัตถุประสงค์ คือ การ เปลี่ยนแปลงกำไรหรือต้นทุน การวิเคราะห์ความไวในกรณีนี้เป็นการวิเคราะห์เพื่อให้รู้ถึงการ เปลี่ยนแปลงที่จะเกิดขึ้นของคำตอบที่ดีที่สุด (สมพล ทุ่งหว้า , 2544, หน้า 151 – 152)

จากข้อมูลในภาพประกอบ 3.7 ซึ่งเป็นการผลิตสี 2 ชนิด คือ

 X_1 แทน ปริมาณการผลิตสีทาภายนอก (ตัน)

X₂ แทน ปริมาณการผลิตสีทาภายใน (ตัน)

จากผลลัพธ์ที่ได้จากโปรแกรม Lindo ถ้าต้องการกำไรสูงสุดต่อวันจะต้องวาง แผนการผลิต คือ

ผลิตสีทาภายนอก (X_1) วันละ 3 ตัน ผลิตสีทาภายใน (X_2) วันละ 1.5 ตัน และจะได้กำไรสูงสุด 21 พันบาท

จากภาพประกอบ 3.7 ผลลัพธ์จากโปรแกรม Lindo ส่วนที่วิเคราะห์การ เปลี่ยนแปลงสัมประสิทธิ์ของตัวแปรในฟังก์ชันวัตถุประสงค์คือส่วนที่แสดง Obj Coefficient Ranges ดังนี้

Obj Coefficient Ranges

Variable	Current Coef	Allowable	Allowable
		Increase	Decrease
X1	5.000000	1.000000	3.000000
X2	4.000000	6.000000	0.666667

จากส่วนนี้จะแสดงช่วงพิสัย (Range) ของสัมประสิทธิ์ของตัวแปรต่าง ๆ ใน ฟังก์ชันวัตถุประสงค์เพื่อช่วยในการวิเคราะห์ว่า ถ้าสัมประสิทธิ์ของตัวแปรเหล่านั้นในฟังก์ชัน วัตถุประสงค์เปลี่ยนแปลงไปในช่วงดังกล่าวแล้ว ส่วนผสมของผลิตภัณฑ์ (Product Mix) จะ คงเดิม ไม่ต้องหาคำตอบของตัวแบบใหม่ให้เสียเวลา ซึ่งในที่นี้คือยังคงผลิตสีทาภายนอก (X₁) และผลิตสีทาภายใน (X₂) ในจำนวนวันละ 3 ตัน และ 1.5 ตันตามลำดับ ส่วนกำไรของ บริษัท Jog จะเปลี่ยนแปลงหรือไม่นั้นขึ้นอยู่กับเงื่อนไขที่ว่าเป็นการเปลี่ยนแปลงของสีชนิดใด ซึ่งถ้าเป็นตัวแปรอมูลฐานก็จะไม่กระทบต่อกำไรรวม แต่ถ้าเป็นตัวแปรตัวแปรมูลฐานก็จะเกิด ผลกระทบต่อกำไรรวม ซึ่งในที่นี้ทั้งสีทาภายนอก (X₁) และสีทาภายใน (X₂) เป็นตัวแปรมูล ฐานดังนั้นหากเกิดการเปลี่ยนแปลงกำไรรวมจะเปลี่ยนไปด้วย ซึ่งจากผลการวิเคราะห์ช่วงหรือ พิสัยของกำไรของสีทั้งสองชนิด ได้แก่

สีทาภายนอก (X₁) กำไรต่อหน่วยสามารถเปลี่ยนแปลงได้ในช่วง 2 ถึง 6 พันบาท สีทาภายใน (X₂) กำไรต่อหน่วยสามารถเปลี่ยนแปลงได้ในช่วง 3.3333 ถึง 10 พันบาท

หรือสามารถอธิบายผลลัพธ์ดังกล่าวข้างต้นได้ดังนี้

สำหรับสีทาภายนอก (X_1) ซึ่งกำไรปัจจุบันมีค่าเท่ากับ 5 พันบาท ต่อตัน ถ้ากำไร เพิ่มไม่เกิน 1 พันบาทต่อตัน หรือลดลงไม่เกินอีก 3 พันบาทต่อตัน แผนการผลิตที่ทำให้ได้ กำไรสูงสุดจะยังคงเดิมคือ ผลิตสีทาภายนอก (X_1) วันละ 3 ตันและผลิตสีทาภายใน (X_2) วันละ 1.5 ตัน ซึ่งหมายความว่าค่ากำไรของสีทาภายนอก (X_1) อยู่ระหว่าง (5-3)=2 พันบาทต่อตัน ถึง (5+1)=6 พันบาทต่อตัน การผลิตที่จะให้กำไรสูงสุดจะยังคงเดิมคือ $X_1=3$, $X_2=1.5$ แต่หากว่ากำไรของสีทาภายนอกลดลงเกิน 3 พันบาทต่อตันก็จะไม่ เพียงพอให้สีทาภายนอกได้รับการผลิต หรือถ้ากำไรสูงกว่า 1 พันบาทต่อตันก็ต้องมีการหา คำตอบที่เหมาะสมที่สุดใหม่ว่าควรผลิตสีทาภายนอกเท่าใด

สำหรับสีทาภายในก็ทำนองเดียวกัน คือ กำไรปัจจุบันมีค่าเท่ากับ 4 พันบาท ต่อตัน ถ้ากำไรเพิ่มไม่เกิน 6 พันบาทต่อตัน หรือลดลงไม่เกินอีก 0.6667 พันบาทต่อตัน แผนการ ผลิตที่ทำให้ได้กำไรสูงสุดจะยังคงเดิมคือ ผลิตสีทาภายนอก (X_1) วันละ 3 ตันและผลิตสีทา ภายใน (X_2) วันละ 1.5 ตัน ซึ่งหมายความว่าค่ากำไรของสีทาภายนอก (X_1) อยู่ระหว่าง (4-0.6667)=3.3333 พันบาทต่อตัน ถึง (4+6)=10 พันบาทต่อตัน การผลิตที่จะให้ กำไรสูงสุดจะยังคงเดิมคือ $X_1=3$, $X_2=1.5$ แต่หากว่ากำไรของสีทาภายในลดลงเกิน 0.3333 พันบาทต่อตันก็จะไม่เพียงพอให้สีทาภายในได้รับการผลิต หรือถ้ากำไรสูงกว่า 6 พันบาทต่อตันก็ต้องมีการหาคำตอบที่เหมาะสมที่สุดใหม่ว่าควรผลิตสีทาภายในเท่าใด

2) เมื่อมีการเปลี่ยนแปลงค่าคงที่ทางขวามือของสมการข้อบังคับ
ผลลัพธ์จากโปรแกรม Lindo นอกจากจะให้ช่วงการเปลี่ยนแปลงของ
สัมประสิทธิ์ของตัวแปรในฟังก์ชันวัตถุประสงค์แล้ว ยังแสดงช่วงการเปลี่ยนแปลงค่าคงที่
ทางขวามือของสมการข้อบังคับต่างๆด้วย การเปลี่ยนแปลงค่าคงที่ทางขวามือของสมการ
ข้อบังคับ คือ การเปลี่ยนแปลงของจำนวนทรัพยากร ในกรณีนี้เป็นการวิเคราะห์เพื่อให้รู้ถึง
การเปลี่ยนแปลงที่จะเกิดขึ้นของมูลค่าทรัพยากร (Dual Prices)

จากภาพประกอบ 3.7 ผลลัพธ์จากโปรแกรม Lindo ส่วนที่วิเคราะห์การ เปลี่ยนแปลงค่าคงที่ทางขวามือของสมการข้อบังคับคือส่วนที่แสดง Righthand Side Ranges ดังนี้

Righthand Side Ranges

Row	Current	Allowable	Allowable
	Rhs	Increase	Decrease
2	24.000000	12.000000	4.000000
3	6.000000	0.666667	2.000000
4	2.000000	Infinity	0.500000
5	1.000000	Infinity	2.500000

จากส่วนนี้สามารถสรุปช่วงการเปลี่ยนแปลงค่าทางขวามือของสมการข้อบังคับ ได้ดังนี้

วัตถุดิบ A₁ สามารถเปลี่ยนแปลงได้ในช่วง 20 ถึง 36 ตัน วัตถุดิบ A₂ สามารถเปลี่ยนแปลงได้ในช่วง 4 ถึง 6.666667 ตัน ความต้องการสูงสุดต่อวันของสีทาภายใน สามารถเปลี่ยนแปลงได้ในช่วง 1.5 ถึง

ความต้องการสูงสุดต่อวันของสีทาภายนอก สามารถเปลี่ยนแปลงได้ในช่วง 1.5 ถึง ∞ ตัน

∞ ตัน

โดยจากภาพประกอบ 3.7 สามารถพิจารณาการเปลี่ยนแปลงกำไรได้ด้วยค่า Dual Price ดังนี้

Row	Slack Or Surplus	Dual Prices
2)	0.000000	0.750000
3)	0.000000	0.500000
4)	0.500000	0.000000
5)	2.500000	0.000000

สรุปได้ว่า

ช่วงการเปลี่ยนแปลงคือ $20 \le A_1 \le 36$ ไม่ว่าจะเพิ่มขึ้นหรือลดลงจาก 24 ตัน แต่ละ 1 ตันของวัตถุดิบ A_2 จะทำให้กำไรเพิ่มขึ้นหรือลดลงเป็น 0.75 (พันบาทต่อตันของ วัตถุดิบ A_1)

ช่วงการเปลี่ยนแปลงคือ $4 \le A_2 \le 6.667$ ไม่ว่าจะเพิ่มขึ้นหรือลดลงจาก 6 ตัน แต่ละ 1 ตันของวัตถุดิบ A_2 จะทำให้กำไรเพิ่มขึ้นหรือลดลงเป็น 0.5 (พันบาทต่อตันของ วัตถุดิบ A_2)

บทสรุป

ปัญหาแต่ละปัญหาจะมีรูปแบบของปัญหาที่มีความสัมพันธ์กับปัญหาเดิม (Primal Problem) เสมอ ซึ่งจะเรียกว่าปัญหาควบคู่ (Dual Problem) ซึ่งปัญหาทั้งสองนี้จะมี เป้าหมายที่ตรงข้ามกันเสมอ เช่น ถ้าปัญหาเดิมมีเป้าหมายสูงสุด ปัญหาควบคู่ก็จะมี เป้าหมายต่ำสุด โดยที่การสร้างปัญหาควบคู่ขึ้นก็เพื่อช่วยลดเวลาในการคำนวณ เช่น ปัญหา เดิมมี 6 ตัวแปร 2 ข้อจำกัด ไม่สามารถใช้วิธีกราฟแก้ปัญหาได้ เนื่องจากมีตัวแปรมากกว่า 2 ตัว เมื่อเปลี่ยนเป็นปัญหาควบคู่จะสามารถใช้วิธีกราฟได้ หรือสามารถนำปัญหาควบคู่ไปใช้ อธิบายในเรื่องการวิเคราะห์ความไวต่อการเปลี่ยนแปลงซึ่งสามารถตรวจสอบได้ 2 วิธี คือ 1. กรณีที่มีตัวแปร 2 ตัวแปรสามารถตรวจสอบโดยใช้กราฟ และ 2. หากว่ามีตัวแปร มากกว่า 2 ตัวแปรสามารถตรวจสอบโดยใช้โปรแกรมคอมพิวเตอร์ได้

คำถามท้ายบท

1. จงแสดงตัวแบบปัญหาควบคู่ (Dual Problem) ของปัญหาต่อไปนี้

สมการเป้าหมาย : Max Z = $6x_1 + 5x_2$

ข้อจำกัด :

$$X_1 + 9X_2 \le 60$$

$$2X_1 + 3X_2 \le 45$$

$$5X_1 - 2X_2 \le 20$$

$$X_2 \leq 30$$

ข้อกำหนด : $X_1, X_2 \ge 0$

2. จงแสดงตัวแบบปัญหาควบคู่ (Dual Problem) ของปัญหาต่อไปนี้ สมการเป้าหมาย : Max Z = 290 X_1 + 250 X_2

ข้อจำกัด :

$$30 X_{1} + 20X_{2} \le 3,200$$

$$10 X_{1} + 6X_{2} \le 1,080$$

$$3X_{1} + 3X_{2} \le 390$$

ข้อกำหนด : X₁, X₂ ≥ 0

3. จงแสดงตัวแบบปัญหาควบคู่ (Dual Problem) ของปัญหาต่อไปนี้

สมการเป้าหมาย : Max Z = 250 X_1 + 290 X_2

ข้อจำกัด :

$$20 X_1 + 30X_2 \le 3,300$$

$$10 X_{1} + 6X_{2} \le 1,080$$

$$3X_1 + 3X_2 \le 360$$

ข้อกำหนด : X₁, X₂ ≥ 0

4. จงแสดงตัวแบบปัญหาควบคู่ (Dual Problem) ของปัญหาต่อไปนี้

สมการเป้าหมาย : Min Z = 150 X₁ + 125x₂ ข้คจำกัด :

 $30X_1 + 70X_2 \ge 3,300$

 $22X_1 + 19X_2 \ge 1,080$

 $4x_1 + 12x_2 \ge 360$

ข้อกำหนด : X₁, X₂ ≥ 0

- 5. บริษัทแห่งหนึ่งต้องการผลิตอาหารสำเร็จรูปออกจำหน่าย โดยอาหารสำเร็จรูปที่ผลิต จะต้องประกอบด้วยวิตามิน A อย่างน้อย 800 หน่วย และวิตามิน B อย่างน้อย 1,200 หน่วย การผลิตอาหารสำเร็จรูปจะต้องใช้ไข่หรือเนื้ออย่างใดอย่างหนึ่งหรืออาจจะใช้ทั้งไข่และ เนื้อก็ได้ ซึ่งไข่ 1 หน่วยจะให้วิตามิน A 2 หน่วย และให้วิตามิน B 2 หน่วย เนื้อ 1 หน่วยให้วิตามิน A 1 หน่วย และให้วิตามิน B 3 หน่วย ต้นทุนไข่ 1 หน่วย เท่ากับ 30 บาท ต้นทุนเนื้อ 1 หน่วย เท่ากับ 70 บาท
- ก. จากปัญหานี้หากต้องการทราบส่วนผสมของไข่หรือเนื้อที่จะผลิตอาหารสำเร็จรูป ให้ได้ต้นทุนต่ำสุดจะเขียนเป็นตัวแบบกำหนดการเชิงเส้นอย่างไร
 - ข. จากปัญหาเดิมในข้อ ก จงเขียนปัญหาควบคู่
- 6. บริษัทผู้ผลิตสินค้าแห่งหนึ่งมีโรงงานผลิต 2 แห่ง สินค้าที่ผลิตได้ขจากโรงงานทั้งสองแห่ง จะถูกส่งไปเก็บที่คลังสินค้าของบริษัท ซึ่งมีอยู่ 3 แห่ง เพื่อรอจัดส่งให้ลูกค้าต่อไป ถ้า โรงงานแห่งแรกผลิตสินค้าได้วันละ 2,500 หน่วย โรงงานแห่งที่สองผลิตสินค้าได้วันละ 3,500 หน่วย ส่วนคลังสินค้าทั้ง 3 แห่งนั้น สามารถเก็บสินค้าได้เต็มที่แห่งละ 2,000 หน่วย 3,000 หน่วย และ 1,000 หน่วย ตามลำดับ ในการส่งสินค้าจากโรงงานทั้งสอง แห่งไปยังคลังสินค้าต่าง ๆ จะเสียค่าใช้จ่ายในการขนส่งต่างกัน ดังนี้

ถึง			
จาก	คลังสินค้าที่ 1	คลังสินค้าที่ 2	คลังสินค้าที่ 3
โรงงานที่ 1	1.5	2	4
โรงงานที่ 2	2.5	0.5	3

- ก. บริษัทควรจัดส่งสินค้าจากโรงงานทั้งสองแห่งไปยังคลังสินค้าทั้งสามแห่งอย่างไรจึง จะเหมาะสมที่สุด โดยโรงงานแต่ละโรงจะต้องส่งสินค้าให้หมด และคลังสินค้าแต่ละแห่ง จะต้องเก็บสินค้าให้ได้ตามความต้องการ จงเขียนเป็นตัวแบบกำหนดการเชิงเส้น
 - ข. จากปัญหาเดิมในข้อ ก จงเขียนปัญหาควบคู่
- 7. โรงงานผลิตเสื้อผ้าสำเร็จรูปแห่งหนึ่ง ต้องการหาจำนวนของการผลิตเสื้อและกางเกง เพื่อให้ได้กำไรสูงสุดในการนำไปขาย โดยการขายเสื้อ ได้กำไร 20 บาท/ 1 ตัว และกางเกง 30 บาท/ 1 ตัว ซึ่งการผลิตเสื้อ 1 ตัว ใช้ผ้า 30 เมตร และกางเกง 1 ตัว ใช้ผ้า 20 เมตร โดยโรงงาน มีผ้าอยู่ทั้งหมด 300 หลา และการผลิตเสื้อ 1 ตัว ใช้คน 5 คน และกางเกง 1 ตัว ใช้คน 10 คน โดยพนักงานทั้งหมดมี 110 คน
 - ก. จากปัญหานี้จงเขียนตัวแบบกำหนดการเชิงเส้น
 - ข. จากปัญหานี้จงใช้วิธีกราฟในการแก้ปัญหา
 - ค. จากปัญหานี้จงวิเคราะห์ความไวต่อการเปลี่ยนแปลงด้วยวิธีกราฟ
- 8. โรงพิมพ์แห่งหนึ่งมีชั่วโมงการทำงานในแผนกพิมพ์ และแผนกทำปก 9,000 ชั่วโมง และ 8,000 ชั่วโมง ตามลำดับ โดยโรงพิมพ์แห่งนี้มีหนังสือที่พิมพ์จำหน่ายอยู่ 4 ชนิด เวลาที่ใช้ พิมพ์หนังสือแต่ละชนิดในแต่ละแผนก และกำไรต่อเล่มของหนังสือแต่ละชนิด แสดงในตาราง ต่อไปนี้

หนังสือชนิด	1	2	3	4
แผนกพิมพ์ (ชั่วโมง/เล่ม)	0.1	0.3	0.8	0.4
แผนกเข้าปก (ชั่วโมง/เล่ม)	0.2	0.1	0.1	0.3
กำไร/เล่ม	20	20	80	60

โรงงานแห่งนี้จะต้องตัดสินใจว่าควรจะผลิตหนังสือแต่ละชนิดกี่เล่ม จึงจะทำให้ได้กำไร สูงสุด ดังนั้นจึงสั่งให้นักวิเคราะห์เชิงปริมาณทำการสร้างตัวแบบกำหนดการเชิงเส้นของปัญหา ดังกล่าว สามารถสร้างตัวแบบกำหนดการเชิงเส้นได้ดังนี้

ให้ X₁ แทน จำนวนการผลิตหนังสือชนิดที่ 1 (เล่ม)

X₂ แทน จำนวนการผลิตหนังสือชนิดที่ 2 (เล่ม)

X₃ แทน จำนวนการผลิตหนังสือชนิดที่ 3 (เล่ม)

X₄ แทน จำนวนการผลิตหนังสือชนิดที่ 4 (เล่ม)

Z แทน จำนวนกำไรทั้งหมดที่ได้จากการพิมพ์หนังสือ (บาท)

สามารถเขียนเป็นตัวแบบกำหนดการเชิงเส้นได้ดังนี้

สมการเป้าหมาย :
$$\text{Maxz} = 20\text{x}_1 + 20\text{x}_2 + 80\text{x}_3 + 60\text{x}_4$$
 ข้อจำกัด :

$$0.1x_1 + 0.3x_2 + 0.8x_3 + 0.4x_4 \le 9,000$$

$$0.2x_1 + 0.1x_2 + 0.1x_3 + 0.3x_4 \le 8,000$$

ข้อกำหนด : X₁, X₂ ≥ 0

นำตัวแบบกำหนดการเชิงเส้นข้างต้นไปหาคำตอบด้วยคอมพิวเตอร์ โดยใช้โปรแกรม Lindo ได้ผลลัพธ์การวิเคราะห์ ดังนี้

Lp Optimum Found At Step

Objective Function Value

1) 1400000.

Variable	Value	Reduced Cost
X1	10000.000000	0.000000
X2	0.000000	20.000002
X3	0.000000	20.000002
X4	20000.000000	0.000000
Row	Slack Or Surplus	Dual Prices
2)	0.000000	120.000000
3)	0.000000	40.000000

No. Iterations= 1
Ranges In Which The Basis Is Unchanged:

Obj	Coefficient	Ranges
-----	-------------	--------

Variable	Current	Allowable	Allowable
	Coef	Increase	Decrease
X1	20.000000	5.00000	0 5.000000
X2	20.000000	20.00000	2 Infinity
X3	80.000000	20.00000	2 Infinity
X4	60.000000	20.00000	0 6.66667
	Rightha	nd Side Ranges	
Row	Current	Allowable	Allowable
	Rhs	Increase	Decrease
2	9000.000000	1666.66662	5000.000000
3	8000.00000	10000.00000	0 1250.000000

จากรายงานผลลัพธ์โปรแกรม Lindo ให้นักศึกษาอธิบายการวิเคราะห์ความไวต่อการ เปลี่ยนแปลง

9. ร้านสยามการผลิต ผลิตอุปกรณ์สนาม 3 ชนิด คือ เก้าอี้เหล็กดัด ที่วางกระถางต้นไม้ และชิงช้า กระบวนการผลิตอุปกรณ์สนามทั้ง 3 ชนิด ผ่าน 2 ขั้นตอน คือ แผนกเหล็กดัด และแผนกเชื่อม เวลาที่ใช้ในการผลิตอุปกรณ์สนามแต่ละชนิดหนึ่งตัวในแต่ละแผนก และ กำลังการผลิตปัจจุบันในเดือนนี้ของแต่ละแผนก แสดงได้ดังตารางต่อไปนี้

แผนก	เวลาที่ใช้ในการผลิตต่อ 1 ตัว (ชม.)			กำลังการผลิต
	เก้าอื้ ที่วางกระถาง ชิงช้า			ปัจจุบันของเดือนนี้
	เหล็กดัด	ต้นไม้		(ชม.)
แผนกเหล็กคัด	1.3	1.8	1.3	2,200
แผนกเชื่อม	0.8	0	2.3	2,600

ร้านสยามการผลิตส่งอุปกรณ์สนามให้บริษัทเฟอร์นิเจอร์ขายส่งอีกทีหนึ่ง โดยกำไรต่อ หน่วยที่คาดว่าจะได้รับจากการขายเก้าอี้เหล็กดัดเป็น 70 บาท ที่วางกระถางต้นไม้เป็น 40 บาท และชิงช้าเป็น 150 บาท ร้านสยามการผลิตสามารถขายอุปกรณ์ให้บริษัทเฟอร์นิเจอร์ได้อย่างไม่จำกัด เพราะว่าความต้องการอุปกรณ์สนามของบริษัทเฟอร์นิเจอร์มีมาก แต่ในเดือนนี้ ร้านสยาม การผลิตมีวัตถุดิบที่ใช้ในการผลิตจำกัดคือ มีเพียง 5,000 ปอนด์ วัตถุดิบที่มีนี้ใช้ในการผลิต อุปกรณ์สนามทั้ง 3 ชนิด โดยในการผลิตเก้าอี้เหล็กดัด 1 ตัวใช้วัตถุดิบ 4 ปอนด์ ผลิตที่ วางกระถางต้นไม้ 1 ตัว ใช้วัตถุดิบ 2 ปอนด์ และผลิตชิงช้า 1 ตัว ใช้วัตถุดิบ 5.5 ปอนด์

ร้านสยามการผลิตจะต้องตัดสินใจว่าในเดือนนี้ควรจะผลิตอุปกรณ์สนามแต่ละชนิดกี่ หน่วยจึงจะทำให้ได้กำไรสูงสุด ให้นักศึกษาสร้างตัวแบบกำหนดการเชิงเส้น พร้อมทั้งวิเคราะห์ โดยใช้โปรแกรม Lindo และแปลความหมายผลลัพธ์ที่ได้จากการวิเคราะห์ด้วยโปรแกรม คอมพิวเตอร์มาโดยละเอียด

10. โรงงานผลิตสินค้า ผลิตสินค้าอยู่ 3 ชนิด คือ แบบมาตรฐาน แบบ Extra และแบบ Super Extra การผลิตสินค้าแต่ละชนิดต้องผ่าน 3 แผนก และเวลาที่ใช้ผลิตสินค้าแต่ละ ชนิดต่อหน่วยในแต่ละแผนก พร้อมทั้งเวลาที่มีอยู่ทั้งหมดของแต่ละแผนก เป็นดังนี้

แผนก	เวลาที่ใช้ในการผลิต			เวลาที่มีอยู่
	มาตรฐาน	Extra	Super Extra	ทั้งหมดของแต่
				ละแผนก
ออกแบบ	3	4	8	2,000
ทำชิ้นส่วน	4	16	13	3,000
ประกอบ	5	11	16	4,000
กำไร/หน่วย (บาท)	10	35	40	

ความต้องการขั้นต่ำของสินค้ามาตรฐานเท่ากับ 100 หน่วย สินค้า Extra เท่ากับ 60 หน่วย โรงงานแห่งนี้จะต้องตัดสินใจว่าควรจะผลิตสินค้าแต่ละชนิดกี่หน่วยจึงจะทำให้ ได้รับกำไรสูงสุด ให้นักศึกษาสร้างตัวแบบกำหนดการเชิงเส้น พร้อมทั้งวิเคราะห์โดยใช้ โปรแกรม Lindo และแปลความหมายผลลัพธ์ที่ได้จากการวิเคราะห์ด้วยโปรแกรม คอมพิวเตอร์มาโดยละเอียด

เอกสารอ้างอิง

- สมพล ทุ่งหว้า. (2544). การวิเคราะห์เชิงปริมาณเพื่อการตัดสินใจ. พิมพ์ครั้งที่ 1. กรุงเทพฯ : สำนักพิมพ์มหาวิทยาลัยรามคำแหง.
- สุทธิชัย โง้วศิริ. (2541). **การวิจัยดำเนินงานเบื้องต้น.** พิมพ์ครั้งที่ 9. กรุงเทพฯ : สำนักพิมพ์มหาวิทยาลัยรามคำแหง.
- สุทธิมา ชำนาญเวช. (2557). การวิจัยดำเนินงาน. พิมพ์ครั้งที่ 4. กรุงเทพฯ : บริษัทพิมพ์ ดีการพิมพ์ จำกัด.
- สุปัญญา ไชยชาญ. (2545). **การวิเคราะห์เชิงปริมาณ (พิมพ์ครั้งที่ 2).** กรุงเทพฯ : พี.เอ.ลีฟวิ่ง.
- สุระพรรณ์ จุลสุวรรณ์. (2555). **การวิเคราะห์เชิงปริมาณ.** พิมพ์ครั้งที่ 1. สงขลา : สำนักพิมพ์มหาวิทยาลัยราชภัฏสงขลา.
- สุธานันท์ โพธิ์ชาธาร. (2546). **การวิเคราะห์เชิงปริมาณ.** นครราชสีมา: สถาบันราชภัฏ นครราชสีมา.
- วีรยา ภัทรอาชาชัย. (2543). **วิธีการวิเคราะห์เชิงปริมาณ.** พิมพ์ครั้งที่ 3. กรุงเทพฯ: แผนก การพิมพ์ มหาวิทยาลัยธุรกิจบัณฑิตย์.
- Anderson, David, R., Sweenwy, Dennis, J. & Williams, Thomas, A. (2003). An introduction to management science: quantitative approaches to decision making.
- Albright, Christian S., And Winston, Wayne L. (2007) **Management Science Modeling.** Cincinnati, Ohio: South Western.
- Render, B., Stair Jr., R. M., & Hanna, M. E. (2011). **Quantitative Analysis For**Management. 11th Ed. New Jersey: Prentice Hall.