

การปรับปรุงขั้นตอนวิธีไฮบริดระหว่างวิธีแบ่งครึ่งช่วงและวิธีนิวตัน – ราฟสัน Improving Hybrid Algorithm to Bisection Method and Newton – Raphson Method

วัชระ วงศา

สาขาวิชาคณิตศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยราชภัฏบุรีรัมย์ Email : watchara.ws@bru.ac.th

บทคัดย่อ

ในงานวิจัยนี้นำเสนอการปรับปรุงขั้นตอนวิธีไฮบริดระหว่างวิธีแบ่งครึ่งช่วงและวิธีนิวตัน – ราฟสัน ในการหาคำตอบของสมการ ไม่เชิงเส้น ซึ่งผลการทดลองเชิงตัวเลขจากการทดสอบกับสมการไม่เชิงเส้นในรูปแบบต่าง ๆ แสดงให้เห็นว่าขั้นตอนวิธีไฮบริดที่ได้รับการ ปรับปรุงนี้มีประสิทธิภาพและมีจำนวนรอบการทำซ้ำน้อยกว่าขั้นตอนวิธีไฮบริดอื่น ๆ ที่นำมาเปรียบเทียบ

คำสำคัญ: วิธีแบ่งครึ่งช่วง, วิธีนิวตัน – ราฟสัน, ขั้นตอนวิธีไฮบริด, สมการไม่เชิงเส้น

Abstract

The purpose of this research propose is to improve hybrid algorithm to bisection method and Newton-Raphson method to compute roots of nonlinear equations. Numerical experiments for various tests nonlinear equations confirm performance for the improved hybrid algorithm to be compared with.

Keywords: Bisection method, Newton - Raphon method, Hybrid Algorithm, Nonlinear equations

1. บทน้ำ

การหาคำตอบของสมการไม่เชิงเส้นโดยวิธีทำซ้ำเป็นหัวข้อหนึ่งที่ สำคัญในการวิเคราะห์เชิงตัวเลข [3, 5, 7] เนื่องจากปัญหาในทาง วิทยาศาสตร์ และวิศวกรรมศาสตร์ มีความซับซ้อนทำให้ไม่สามารถ หาคำตอบแม่นตรงได้โดยวิธีการแก้สมการ วิธีทำซ้ำจึงเป็นทางเลือก หนึ่งที่ใช้การค้นหาคำตอบหรือเรียกอีกอย่างหนึ่งว่า ขั้นตอนวิธีใน การหาค่าศูนย์ของฟังก์ชัน นั่นคือการหาค่า x ที่ทำให้ f(x)=0หนึ่งในวิธีทำซ้ำที่เป็นขั้นตอนวิธีในการค้นหาคำตอบคือวิธีแบ่งครึ่ง ช่วง ซึ่งเป็นวิธีแบบปิด โดยมีแนวคิดในการหาคำตอบโดยใช้ทฤษฎี บทค่าระหว่างกลางเพื่อสร้างช่วงปิดที่บรรจุคำตอบ มีอันดับการลู่เข้า เป็นเชิงเส้น และสามารถหาคำตอบได้แน่นอน แต่เนื่องจากวิธีนี้หา คำตอบได้ค่อนข้างซ้า ดังนั้น Tanakan [8] จึงได้ปรับปรุงวิธีแบ่งครึ่ง ช่วงโดยใช้แนวคิดของวิธีเซแคนต์เพื่อทำให้หาคำตอบได้รวดเร็วขึ้น นอกจากนี้ยังมีวิธีแบบเปิดซึ่งเป็นวิธีทำซ้ำที่รู้จักกันอย่างกว้างขวาง นั่นคือ วิธีนิวตัน – ราฟสัน วิธีนี้ต้องใช้อนุพันธ์ของฟังก์ชันในการ คำนวณหาคำตอบทุกรอบของการทำซ้ำ และมีอันดับการลู่เข้าเป็น สอง จึงถือได้ว่าวิธีนี้มีประสิทธิภาพมากกว่าวิธีแบ่งครึ่งช่วงในด้าน การหาคำตอบได้รวดเร็วกว่า ทำให้มีนักวิจัยเป็นจำนวนมากทำการ ปรับปรุงวิธีนิวตัน – ราฟสัน เพื่อให้มีอันดับการลู่เข้าที่มากขึ้น หนึ่ง ในนั้นคือ Homeier [4] นำเสนอการปรับปรุงวิธีนิวตัน-ราฟสันจนทำ ให้มีอันดับการลู่เข้าเป็นสาม Chun และ Neta [2] ได้ทำการ ปรับปรุงจนทำให้มีอันดับการลู่เข้าเป็นสี่ แต่อย่างไรก็ตาม วิธีนิวตัน - ราฟสัน ไม่สามารถหาคำตอบได้แน่นอน ขึ้นอยู่กับการเลือก จุดเริ่มต้นที่เหมาะสม ดังนั้น Altaee, Hoomod และ Hussein [1] จึงได้นำเสนอขั้นตอนวิธีไฮบริดระหว่างวิธีแบ่งครึ่งช่วงและวิธีนิวตัน— ราฟสัน และในเวลาต่อมา Kim, Noh, Oh และ Park [6] ได้ทำการ สร้างขั้นตอนวิธีไฮบริดที่ใช้วิธีแบ่งครึ่งช่วงและวิธีนิวตัน – ราฟสัน เพื่อปรับปรุงขั้นตอนวิธีไฮบริดของ Altaee และคณะ

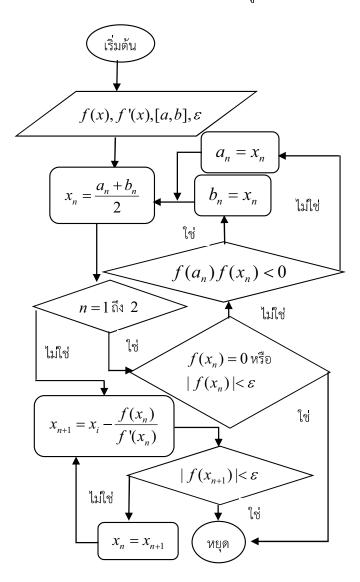
ดังนั้นในงานวิจัยนี้จะใช้ตัวอย่างใน [6] เพื่อแสดงให้เห็นว่าการ ปรับปรุงขั้นตอนวิธีไฮบริดแบบใหม่นี้ มีจำนวนรอบการทำซ้ำน้อย กว่าวิธีแบ่งครึ่งช่วงและขั้นตอนวิธีไฮบริดใน [1] และ [6] อีกทั้งยังมี ประสิทธิภาพในการลู่เข้ามากว่าวิธีนิวตัน-ราฟสัน

2. การออกแบบการวิจัย

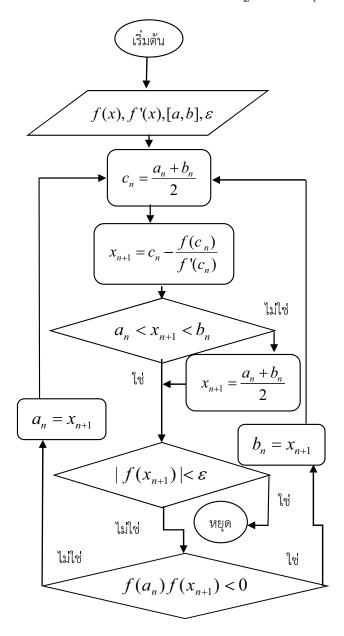
ทำการทดลองเปรียบเทียบการลู่เข้าและจำนวนรอบทำซ้ำในการ หาคำตอบบนค่าคลาดเคลื่อนยินยอมสำหรับขั้นตอนวิธีไฮบริดที่ ปรับปรุงกับขั้นตอนวิธีไฮบริดใน [1] และ [6] พร้อมทั้งเปรียบเทียบ กับวิธีแบ่งครึ่งช่วงและวิธีนิวตัน-ราฟสัน โดยใช้โปรแกรม Scilab 6.0.1 (64 bit) บนระบบปฏิบัติการวินโดว์ 10 ซึ่งกำหนดค่า คลาดเคลื่อนยินยอม (ε) คือ 1.0×10^{-5} และกำหนดเกณฑ์การลู่ ออกเมื่อจำนวนรอบการทำซ้ำมากกว่า 1,000 รอบ โดยทดสอบกับ ฟังก์ชันต่าง ๆ ดังนี้

ฟังก์ชันที่ 1
$$f(x) = \arctan x$$
 บนช่วงปิด [-4,5]

ฟังก์ชันที่ 2
$$f(x) = e^{-x} + \cos x$$
 บนช่วงปิด [-2,2]


ฟังก์ชันที่ 3
$$f(x) = 10xe^{-x^2} - 1$$
บนช่วงปิด $[-1,1]$

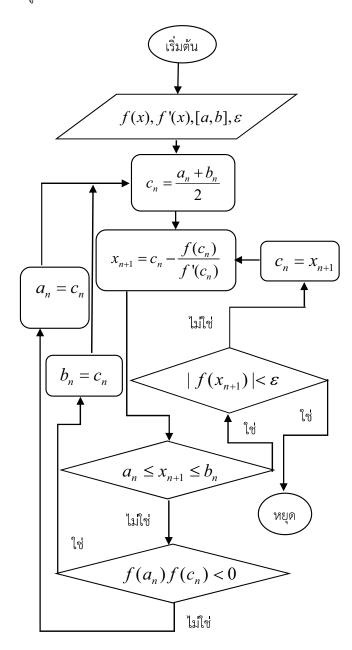
ฟังก์ชันที่ 4
$$f(x) = e^{\sin x^2 - 3x} - 5x - 150$$
 บนช่วงปิด $[-5, 6]$


3. วิธีการวิจัย

ในปี 2015 Altaee, Hoomod และ Hussein ได้นำเสนอ ขั้นตอนวิธีไฮบริดระว่างวิธีแบ่งครึ่งช่วงและวิธีนิวตัน-ราฟสัน โดย ขั้นตอนวิธีไฮบริดนี้มีรายละเอียดดังแผนภาพในรูปที่ 4

ร**ูปที่ 4** แผนภาพแสดงขั้นตอนวิธีไฮบริดของ Altaee และคณะ (AM)

จากแผนภาพในรูปที่ 4 ขั้นตอนวิธีไฮบริดนี้ต้องกำหนดช่วงเริ่มต้น $[a_0,b_0]=[a,b]$ ที่บรรจุคำตอบ ใช้วิธีแบ่งครึ่งช่วงคำนวณในรอบ ที่หนึ่งและรอบที่สองเพื่อหา x, จากนั้นใช้ x, เป็นจุดเริ่มต้นบนวิธี นิวตัน-ราฟสัน และทำซ้ำจนกระทั้งได้คำตอบตามความแม่นยำที่ กำหนด แต่เนื่องจากขั้นตอนวิธีไฮบริดนี้ไม่มีการตรวจสอบลำดับที่ได้ จากวิธีนิวตัน-ราฟสันบนช่วงที่บรรจุคำตอบจึงทำให้บางครั้งลำดับไม่ อยู่ในช่วงเริ่มต้นและทำให้ลู่ออก ดังนั้นในปี 2017 kim และคณะ ได้นำเสนอขั้นตอนวิธีไฮบริดแบบใหม่โดยใช้วิธีนิวตัน-ราฟสัน และวิธี แบ่งครึ่งช่วงคำนวณในทุกรอบการทำซ้ำเพื่อสร้างช่วงใหม่และลำดับ ที่ได้อยู่ในช่วงที่บรรจุคำตอบตามทฤษฎีบทค่าระหว่างกลางที่ใช้ในวิธี แบ่งครึ่งช่วง โดยขั้นตอนวิธีไฮบริดนี้มีรายละเอียดดังรูปที่ 5



รูปที่ 5 แผนภาพแสดงขั้นตอนวิธีไฮบริดของ kim และคณะ (KM)

จากแผนภาพในรูปที่ 5 เป็นขั้นตอนวิธีไฮบริดที่ต้องกำหนดช่วง $[a_0,b_0]=[a,b]$ ซึ่งเป็นช่วงเริ่มต้นที่บรรจุคำตอบ จากนั้นทำการ แบ่งครึ่งช่วงเพื่อใช้เป็นจุดเริ่มต้นในวิธีนิวตัน-ราฟสัน ถ้าลำดับ x_n ที่ได้จากการทำซ้ำด้วยวิธีนิวตัน-ราฟสันอยู่ในช่วงที่กำหนด นั่นคือ $x_n\in(a_{n-1},b_{n-1})$ และยังไม่ใช่คำตอบที่อยู่ในค่าคลาดเคลื่อน ยินยอมที่กำหนดขึ้นต้องสร้างช่วงใหม่จาก $[a_{n-1},x_n]$ และ $[x_n,b_{n-1}]$ โดยใช้วิธีแบ่งครึ่งช่วง ทำให้ขั้นตอนวิธีไฮบริดนี้หา คำตอบได้แน่นอน แต่เนื่องจากในแต่ละรอบการทำซ้ำต้องใช้แรงงาน จากการคำนวณด้วยวิธีนิวตัน-ราฟสันและวิธีแบ่งครึ่งช่วงทุกครั้ง ดังนั้นผู้วิจัยจึงนำเสนอการปรับปรุงขั้นตอนวิธีไฮบริดของ kim และ คณะ โดยลดขั้นตอนการสร้างช่วงใหม่ที่บรรจุคำตอบทุกรอบการ ทำซ้ำ โดยการกำหนด $[a_0,b_0]=[a,b]$ เป็นช่วงเริ่มต้นที่บรรจุคำตอบ จากนั้นคำนวณโดยวิธีแบ่งครึ่งช่วงเพื่อใช้เป็นจุดเริ่มต้นของ วิธีนิวตัน-ราฟสัน ถ้าลำดับ x ที่ได้อยู่ในช่วงที่กำหนดนั่นคือ

 $x_n\in [a_{n-1},b_{n-1}]$ แล้วจะทำซ้ำโดยคำนวณด้วยวิธีนิวตัน-ราฟสัน จนได้คำตอบในค่าคลาดเคลื่อนยินยอมที่กำหนด แต่ถ้าลำดับที่ได้ ออกนอกช่วง นั่นคือ $x_n\not\in [a_{n-1},b_{n-1}]$ จะต้องสร้างช่วงใหม่โดยใช้ วิธีแบ่งครึ่งช่วงจากช่วง $[a_{n-1},c_{n-1}]$ และ $[c_{n-1},b_{n-1}]$ เพื่อหา จุดเริ่มต้นของวิธีนิวตัน-ราฟสันอีกครั้ง ซึ่งทำให้ขั้นตอนวิธีไฮบริดที่ ได้รับการปรับปรุงนี้สามารถหาคำตอบได้แน่นอนและลดขั้นตอนใน การคำนวณได้มากกว่าขั้นตอนวิธีของ Kim และคณะ ดังรายละเอียด ในรูปที่ 6

รูปที่ 6 แผนภาพแสดงขั้นตอนวิธีไฮบริดที่ได้ปรับปรุง (IM)

จากรูปที่ 6 เขียนขั้นตอนวิธีไฮบริดที่ปรับปรุงได้ดังนี้ กำหนดให้ $[a_0,b_0]$ เป็นช่วงเริ่มต้นที่บรรจุคำตอบ โดยแนวคิดจาก ทฤษฎีบทค่าระหว่างกลาง นั่นคือ $f(a_0)f(b_0) < 0$ และกำหนด ε เป็นค่าคลาดเคลื่อนยินยอม

การประชุมวิชาการระดับชาติ "ราชภัฏกรุงเก่า" ประจำปี พ.ศ.2561 13–14 ธันวาคม พ.ศ. 2561 ณ มหาวิทยาลัยราชภัฏพระนครศรีอยุธยา

ขั้นตอนที่ 1 คำนวณหา
$$c_n$$
 จาก $c_n = \frac{a_n + b_n}{2}$

ขั้นตอนที่ 2 คำนวณหา
$$x_{n+1}$$
 จาก $x_{n+1} = c_n - \frac{f(c_n)}{f'(c_n)}$

ขั้นตอนที่ 3 ถ้า $x_{n+1} \in [a_n,b_n]$ แล้ว คำนวณ $|f(x_{n+1})|$ ถ้า $|f(x_{n+1})|$ น้อยกว่าค่าคลาดเคลื่อนยินยอมที่กำหนดให้หยุดการ ทำซ้ำ แต่ถ้า $|f(x_{n+1})|$ ยังไม่น้อยกว่าค่าคลาดเคลื่อนยินยอมที่ กำหนด แล้วให้ $c_n = x_{n+1}$ และกลับไปทำขั้นตอนที่ 2

ขั้นตอนที่ 4 ถ้า $x_{n+1}\not\in [a_n,b_n]$ และถ้า $f(a_n)f(c_n)<0$ แล้ว $[a_{n+1},b_{n+1}]=[a_n,c_n]$ ถ้าไม่ใช่ $[a_{n+1},b_{n+1}]=[c_n,b_n]$ และกลับไปทำขั้นตอนที่ 1

4. ผลการวิจัย

จากการทดลองเปรียบเทียบการลู่เข้าและจำนวนรอบทำซ้ำเพื่อ หาคำตอบบนค่าคลาดเคลื่อนยินยอมที่กำหนดไว้สำหรับขั้นตอนวิธี ต่าง ๆ ซึ่งประกอบด้วย

- 1. ขั้นตอนวิธีไฮบริดของ Altaee และคณะ (AM)
- 2. ขั้นตอนวิธีไฮบริดของ kim และคณะ (KM)
- 3. ขั้นตอนวิธีไฮบริดที่ปรับปรุง (IM)
- 4. วิธีแบ่งครึ่งช่วง (BM)
- 5. วิธีนิวตัน-ราฟสัน (NM)

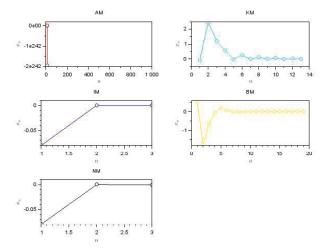
โดยทดสอบกับฟังก์ชันทั้งหมด 4 ฟังก์ชัน เพื่อวัดประสิทธิภาพการ ลู่เข้าและจำนวนรอบการทำซ้ำ (n) ของแต่ละขั้นตอนวิธีซึ่งมีผลการ ทดลองตามตารางที่ 1 – 4 ดังนี้

ตารางที่ 1 แสดงจำนวนรอบการทำซ้ำแต่ละขั้นตอนวิธีสำหรับ ฟังก์ชันที่ 1

	วิธี	n	\mathcal{X}_n	$f(x_n)$
	AM	ลู๋ออก		
Ī	KM	13	-0.0000032	-0.0000032
	IM	3	-2.513×10^{-11}	-2.513×10^{-11}
Ī	ВМ	19	0.0000019	0.0000019
	NM	3	-2.513×10^{-11}	-2.513×10^{-11}

ตารางที่ 2 แสดงจำนวนรอบการทำซ้ำแต่ละขั้นตอนวิธีสำหรับ ฟังก์ชัน 2

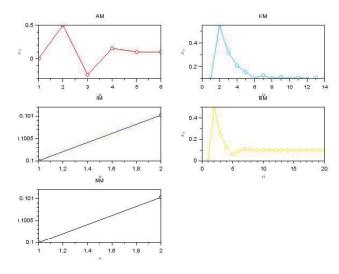
วิธี	n	X_n	$f(x_n)$
AM	4	1.746136	0.0000041
KM	5	1.7461388	0.0000008
IM	4	1.7461395	1.868×10 ⁻¹⁰
ВМ	18	1.7461395	4.684×10 ⁻⁹
NM	4	1.7461395	1.868×10 ⁻¹⁰

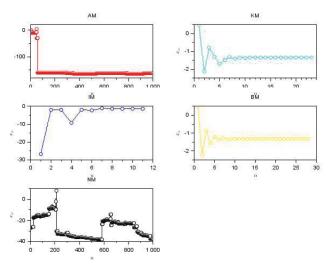

ตารางที่ 3 แสดงจำนวนรอบการทำซ้ำแต่ละขั้นตอนวิธีสำหรับ ฟังก์ชัน 3

วิธี	п	X_n	$f(x_n)$
AM	6	0.1010255	0.0000041
KM	14	0.1010249	-0.0000088
IM	2	0.1010255	-0.0000031
ВМ	20	0.1010265	0.0000067
NM	2	0.1010255	-0.0000031

ตารางที่ 4 แสดงจำนวนรอบการทำซ้ำแต่ละขั้นตอนวิธีสำหรับ ฟังก์ชัน 4

วิธี	n	X_n	$f(x_n)$
AM	ล ูออก		
KM	23	-1.3279545	-0.0000086
IM	11	-1.3279545	-3.300×10^{-9}
ВМ	28	-1.3279545	-0.0000041
NM	ลู๋ออก		


และเมื่อวาดกราฟเพื่อแสดงจำนวนรอบการทำซ้ำทั้งหมดของแต่ละ ขั้นตอนวิธี ผลลัพธ์ที่ได้เป็นไปตามรูปภาพที่ 7 - 10 ดังนี้


รูปที่ 7 แสดงจำนวนรอบการทำซ้ำทั้งหมดของแต่ละขั้นตอนวิธี สำหรับฟังก์ชันที่ 1

1.5 -	4	1.5 -
â	25 3 35 4 M	0.5 - 0 1 2 3 4 5
1.9		1.5 - 1 - 0.5
1 1.5 2 2	2.5 3 3.5 4	0 2 4 6 8 10 12 14 16 18
1.8	2.5 3 3.5 4	

รูปที่ 8 แสดงจำนวนรอบการทำซ้ำทั้งหมดของแต่ละขั้นตอนวิธี สำหรับฟังก์ซันที่ 2

ร**ูปที่ 9** แสดงจำนวนรอบการทำซ้ำทั้งหมดของแต่ละขั้นตอนวิธี สำหรับฟังก์ชันที่ 3

รูปที่ 10 แสดงจำนวนรอบการทำซ้ำทั้งหมดของแต่ละขั้นตอนวิธี สำหรับฟังก์ชันที่ 4

5. อภิปรายผล

จากผลการทดลองเชิงตัวเลขในตารางที่ 1 – 4 และรูปที่ 7 - 10 แสดงให้เห็นว่าขั้นตอนวิธีไฮบริดที่ปรับปรุงนี้ เมื่อทดสอบกับฟังก์ชัน ที่ 1 - 4 มีจำนวนรอบการทำซ้ำเป็น 3, 4, 2 และ 11 ตามลำดับ โดยสามารถหาคำตอบบนค่าคลาดเคลื่อนยินยอมที่กำหนดได้ทุก ฟังก์ชันที่นำเสนอ แม้ว่าฟังก์ชันที่ 1 และ 4 วิธีนิวตัน-ราฟสันและ ขั้นตอนวิธีไฮบริดของ Altaee และคณะ จะไม่สามารถหาคำตอบได้ อีกทั้งยังมีจำนวนรอบการทำซ้ำน้อยกว่าวิธีแบ่งครึ่งช่วงและขั้นตอน วิธีไฮบริดของ Kim และคณะอีกด้วย

6. บทสรุป

ขั้นตอนวิธีไฮบริดที่ปรับปรุงนี้สามารถหาคำตอบของสมการ ไม่เชิงเส้นได้รวดเร็วกว่ากับวิธีแบ่งครึ่งช่วง และขั้นตอนวิธีไฮบริด ของ Kim และคณะ อีกทั้งยังมีประสิทธิภาพมากกว่าวิธีนิวตัน-ราฟสันเนื่องจากลู่เข้าได้แม้ว่าวิธีนิวตัน – ราฟสันนั้นลู่ออก ดังนั้นใน อนาคตผู้วิจัยจะพยายามคำนวณหาอัตราการลู่เข้าของขั้นตอนวิธี ไฮบริดนี้ต่อไป

7. เอกสารอ้างอิง

- [1] Abed Ali H. Altaee, Haider K. Hoomod and Khalid Ali Hussein, "A new approach to find roots of nonlinear equations by hybrid algorithm to bisection and newton-raphson algorithm, " Iraqi journal for information technology, Vol. 7, no. 3, pp. 75-82, 2015.
- [2] Changbum Chun and Beny Neta, "Certain improvements of newton's method with fourth-order convergence," Applied mathematics and comutation, Vol. 215, pp. 821-828, 2009.
- [3] David Kincaid and Ward Cheney, Numerical analysis, 3rd ed. Vena dyer, 2001.
- [4] H. H. Homeier, "A modified newton method for rootfinding with cubic convergence," Journal of computation and applied mathematics, Vol. 157, pp. 227-230, 2003.

การประชุมวิชาการระดับชาติ "ราชภัฏกรุงเก่า" ประจำปี พ.ศ.2561 13–14 ธันวาคม พ.ศ. 2561 ณ มหาวิทยาลัยราชภัฏพระนครศรีอยุธยา

- [5] J. Stoer R. Bulirsch, Introduction to numerical analysis,2th ed. Springer-verlag berlin Heidelberg, 1976.
- [6] Jeongwon Kim, Taehoon Noh, Wonjun Oh and Seung Park, "An improved hybrid algorithm to bisection method and newton-raphson method," Applied mathematical sciences, Vol. 11, no. 56, pp. 2789-2797, 2017.
- [7] Kendall E. Atkimson, An introduction to numerical alnalysis, 2th ed. canada, 1988.
- [8] S. Tanakan, "A new algorithm of modied bisection method for nonlinear equation," Applied mathematical sciences, Vol. 7, no. 123, pp. 6107-6114, 2013.