Fibonacci \(Q \)– matrix and Matrices Formula for Fibonacci and Lucas Sequences

Teerapan Jodnok\(^1\) Sukanya Somprom\(^2\)

\(^1\)Department of Mathematics, Faculty of Science and Technology, Surindra Rajabhat University, Thailand
E-mail: satidkku07@gmail.com
\(^2\)Department of Mathematics, Faculty of Science and Technology, Surindra Rajabhat University, Thailand
E-mail: promsukan@hotmail.com

Abstract

In this paper, we studied and found the new matrices of \(3 \times 3 \), which it have similar properties to Fibonacci \(Q \)– matrix. Moreover, we studied and found the matrix formula

\[
\begin{bmatrix}
0 & 2 & 0 \\
1 & 1 & 0 \\
3 & 1 & 1
\end{bmatrix}
=
\begin{bmatrix}
F_n & L_n \\
F_{n+1} & L_{n+1} \\
F_{n+2} & L_{n+2}
\end{bmatrix}
\]

when \(F_n \) and \(L_n \) are Fibonacci and Lucas sequences, respectively.

Keywords: Fibonacci sequences, Lucas sequences, \(Q \)– matrix

1. Introduction

The Fibonacci sequences is the sequence of integer \(F_n \) defined by the initial values \(F_0 = 1, F_1 = 0 \) and the recurrence relation (Koshy, 2001).

\[
F_n = F_{n-1} + F_{n-2}
\]

for all \(n \geq 3 \).

The frist few values of \(F_n \) are 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

The Lucas sequences is the sequence of integer \(L_n \) defined by the initial values \(L_0 = 2, L_1 = 1 \) and the recurrence relation (Koshy, 2001).
\[L_n = L_{n-1} + L_{n-2} \]

for all \(n \geq 3 \).

The first few values of \(L_n \) are 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, ...

The Fibonacci \(Q \)– matrix was first used by Brenner (Brenner, 1951), and its basic properties were enumerated by King (King, 1960).

In 1981, Gould showed that the Fibonacci \(Q \)– matrix is a square \(2 \times 2 \) matrix of the following form,

\[
\begin{bmatrix}
1 & 0 \\
1 & 0 \\
\end{bmatrix}
\]

The following property of the \(nth \) power of \(Q \)– matrix was proved

\[
\begin{bmatrix}
F_{n+1} & F_n \\
F_n & F_{n-1} \\
\end{bmatrix}
\]

(Gould, 1981).

In 1985, Honsberger showed that the Fibonacci \(Q \)– matrix is a square \(2 \times 2 \) matrix of the following form,

\[
\begin{bmatrix}
F_2 & F_1 \\
F_1 & F_0 \\
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 0 \\
\end{bmatrix}
\]

The following property of the \(nth \) power of \(Q \)– matrix was proved

\[
\begin{bmatrix}
F_{n+1} & F_n \\
F_n & F_{n-1} \\
\end{bmatrix}
\]

(Honsberger, 1985).

In this paper, we studied and found the new matrices of \(3 \times 3 \), which it have similar properties to Fibonacci \(Q \)– matrix.
2. Main Results

In this study, we studied and found the new matrices of 3×3, which have similar properties to Fibonacci Q matrix. Moreover, we investigate the new property of Fibonacci and Lucas number in relation with the Fibonacci and Lucas matrices formula. We have the following theorem.

\textbf{Theorem 2.1} If
\[
\begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 1 & 1
\end{pmatrix}
\] then
\[
\begin{pmatrix}
F_{n-1} & F_{n-2} & F_n \\
F_{n-2} & F_{n-3} & F_{n-1} \\
F_{n-1} & F_{n-2} & F_n
\end{pmatrix}
\] for all integers $n \geq 3$

\textbf{Proof.} Let use the principle of mathematical induction on n. For $n = 3$ is true, since
\[
\begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 1 & 1
\end{pmatrix}
\]
\[
\begin{pmatrix}
0 & F_{1,1} & F_{1,2} \\
0 & F_{1,2} & F_{1,1} \\
0 & F_{1,3} & F_{1,1}
\end{pmatrix}
\]
Assume that it is true for all positive integer $n = k$, that is
\[
\begin{pmatrix}
0 & F_{k,1} & F_{k,2} \\
0 & F_{k,2} & F_{k,1} \\
0 & F_{k,3} & F_{k,1}
\end{pmatrix}
\]
Consider for $n = k + 1$,
\[
\begin{pmatrix}
0 & F_{k+1,1} & F_{k+1,2} \\
0 & F_{k+1,2} & F_{k+1,1} \\
0 & F_{k+1,3} & F_{k+1,1}
\end{pmatrix} = \begin{pmatrix}
0 & F_{k,1} & F_{k,1} \\
0 & F_{k,2} & F_{k,1} \\
0 & F_{k,3} & F_{k,1}
\end{pmatrix} + \begin{pmatrix}
0 & F_{1,1} & F_{1,2} \\
0 & F_{1,2} & F_{1,1} \\
0 & F_{1,3} & F_{1,1}
\end{pmatrix}
\]
\[
= \begin{pmatrix}
0 & F_{k-2} & F_{k-1} \\
0 & F_{k-1} & F_k \\
0 & F_k & F_{k+1}
\end{pmatrix}
\]
\[
= \begin{pmatrix}
F_{(k+1)-3} & F_{(k+1)-2} \\
F_{(k+1)-2} & F_{(k+1)-1} \\
F_{(k+1)-1} & F_{(k+1)}
\end{pmatrix}
\]
Therefore, the result is true for every \(n \geq 3 \).

Theorem 2.2 For all \(n \in \mathbb{N} \) we have,

\[
Q = \begin{bmatrix} 0 & 2 \\ 1 & 1 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 3 \end{bmatrix} = \begin{bmatrix} F_{i} & L_{i} \\ F_{i+1} & L_{i+1} \\ F_{i+2} & L_{i+2} \end{bmatrix}
\]

Proof. Let use the principle of mathematical induction on \(n \). For \(n = 1 \) is true, since

\[
Q^1 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} F_{i} & L_{i} \\ F_{i+1} & L_{i+1} \\ F_{i+2} & L_{i+2} \end{bmatrix}
\]

Assume that it is true for all positive integer \(n = k \), that is

\[
Q^k = \begin{bmatrix} 0 & 2 \\ 1 & 1 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 3 \end{bmatrix} = \begin{bmatrix} F_{i} & L_{i} \\ F_{i+1} & L_{i+1} \\ F_{i+2} & L_{i+2} \end{bmatrix}
\]

Consider for \(n = k + 1 \),

\[
Q^{k+1} = (QQ^k) = Q \begin{bmatrix} 0 & 2 \\ 1 & 1 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 0 & 2 \\ 1 & 1 \\ 1 & 3 \end{bmatrix}
\]

\[
= \begin{bmatrix} F_{i+1} & L_{i+1} \\ F_{i+2} & L_{i+2} \\ F_{i+2} + F_{i+1} & L_{i+2} + L_{i+1} \end{bmatrix}
\]
Therefore, the result is true for every $n \geq 1$.

Let us generalize this observation using the Fibonacci and Lucas formula matrices.

Proposition 2.3 For all integers m, n such that $3 \leq m < n$, we have the following relations

(a) $F_n = F_{m-1}F_{n-m+1} + F_{m-2}F_{n-m+2}$

(b) $L_n = F_{m-1}L_{n-m+1} + F_{m-2}L_{n-m+2}$

Proof. From the laws of exponent for the square matrices. So, we have

\[
Q^n = Q^n Q^n
\]

it follows that

\[
Q = \begin{bmatrix} 0 & 2 \\ 1 & 1 \end{bmatrix}, \quad Q^n = \begin{bmatrix} 0 & 2 \\ 1 & 3 \end{bmatrix}
\]

From Theorem 2.1 and Theorem 2.2, it follows that:

\[
\begin{bmatrix} F_n & L_n \\ F_{n+1} & L_{n+1} \end{bmatrix} = \begin{bmatrix} 0 & F_{m-1} \\ F_{m-2} & F_{m} \end{bmatrix} \begin{bmatrix} F_{n-m} & L_{n-m} \\ F_{n-m+1} & L_{n-m+1} \end{bmatrix}
\]

By consider the corresponding element. That is,

\[
F_n = F_{m-1}F_{n-m+1} + F_{m-2}F_{n-m+2}
\]

\[
L_n = F_{m-1}L_{n-m+1} + F_{m-2}L_{n-m+2}
\]

Completes the proof.
3. Conclusion

In this paper, we studied and found the new matrices of 3×3, which it have similar properties to Fibonacci Q – matrix. Moreover, we investigate the new property of Fibonacci and Lucas number in relation with the Fibonacci and Lucas matrices formula.

References

