On the Diophantine Equation $8^{x}+n^{y}=z^{2}$

Wachirarak Orosram
Department of Mathematics
Buriram Rajabhat University
31000, Buriram
THAILAND

Chalermwut Comemuang
Department of Mathematics
Buriram Rajabhat University
31000, Buriram
THAILAND

Abstract

Let n be an positive integer with $n \equiv 10(\bmod 15)$. In this paper, we prove that $(1,0,3)$ is unique nonnegative integer solution (x, y, z) of the Diophantine equation $8^{x}+n^{y}=z^{2}$, where x, y and z are non-negative integers.

Key-Words: exponential Diophantine equation, Mersenne primes, solution, Factor, positive integral, nonnegative integer

Received: September 25, 2020. Revised: October 27, 2020. Accepted: October 29, 2020.
Published: October 30, 2020.

1 Introduction

In 2012, Sroysang proved that $(1,0,3)$ is unique solution (x, y, z) for the Diophantine equation $8^{x}+19^{y}=z^{2}$ [1]. In 2014, Sroysang also showed that $(1,0,3)$ is a unique the solution (x, y, z) for Diophantine equation $8^{x}+13^{y}=z^{2}$ where x, y and z are non-negative integers. [2]. Moreover, he proved that $(1,0,3)$ is a unique non-negative integer solution (x, y, z) for the Diophantine equation $8^{x}+59^{y}=z^{2}$ where x, y and z are non-negative integers [3]. In 2015, L an Qi and Xiaoxue Li showed that the Diophantine equation $8^{x}+p^{y}=z^{2}$ if $p \equiv \pm 3(\bmod 8)$ has no non -negative solutions (x, y, z), if $p \equiv 7(\bmod 8)$, is a unique solutions $(p, x, y, z)=\left(2^{q}-1,(1 / 3)(q+2), 2,2^{q}+1\right), \quad$ where q is an odd prime with $q \equiv 1(\bmod 3)$; if $p \equiv 1(\bmod 8)$ and $p \neq 17$, then the equation has at most two positive integer solutions (x, y, z) [4]. In 2017, Asthana have shown that the Diophantine equation $8^{x}+113^{y}=z^{2}$ has only three non-negative integer solutions where x, y and z are non-negative integers. The solutions (x, y, z) are $(1,0,3),(1,1,11)$ and (3, 1, 25) [5]. In 2019, Makate N., Srimud K.,

Warong A. and Supjaroen W. showed that the two Diophantine equations $8^{x}+61^{y}=z^{2}$ and $8^{x}+67^{y}$ $=z^{2}$ have a unique solution, that is $(x, y, z)=(1,0,3)$ [6]. In the same year Burshtein established in a very elementary manner that the equation $8^{x}+9^{y}=z^{2}$ has no solutions when x, y and z are positive integers. These results are achieved in particular by utilizing the last digits of the powers $8^{x}, 9^{y}$ [7]. In 2020, A. Elshahed A. and Kamarulhaili H. have shown that the Diophantine equation $\left(4^{n}\right)^{x}-p^{y}=z^{2}$, where p is an odd prime, $n \in \mathrm{Z}^{+}$and x, y, z are non-negative integers, has been investigated to show that the solutions are given by $\{(x, y, z, p)\}$ $=\{(k, 1,2 n k-1,2 n k+1-1)\} \cup\{(0,0,0, p)\}$
In this paper we consider some Diophantine equations $8^{x}+n^{y}=z^{2}$ where n be an positive integer with $n \equiv 10(\bmod 15), x, y$ and z are nonnegative integers.

2 Preliminaries

Let $n \equiv 10(\bmod 15)$. In this paper we assume that n is a non-negative integer. It is clear that $n \equiv 1(\bmod 3)$ and $n \equiv 0(\bmod 5)$

Lemma 1. $(a, b, x, y)=(3,2,2,3)$ is a unique solution of the Diophantine equation $a^{x}-b^{y}=1$ where a, b, x and y are integers with $\min \{a, b, x, y\}>1$

Proof see Mihailescu [9]
Lemma $2(1,3)$ is a unique solution (x, z) for the Diophantine equation $8^{x}+1=z^{2}$ where x and z are non-negative integers.

Proof see Sroysang [1]

Let p be an odd prime and a be a positive integer where $\operatorname{gcd}(a, p)=1$. If the quadratic congruence $x^{2} \equiv a(\bmod p)$ has a solution, then a is said to be a quadratic residue of p. Otherwise, a is called a quadratic non-residue of p. In 1798 Adrien-Marie Legendre introduced the Legendre symbol $\left(\frac{a}{p}\right)$ which is defined by
$\left(\frac{a}{p}\right)=\left\{\begin{aligned} 1 & ; \text { if } a \text { is a quadratic residue of } p, \\ -1 & ; \text { if } a \text { is a quadratic non-residue of } p .\end{aligned}\right.$
In this paper, using following these symbols.
Theorem 3. If p is an odd prime, then [10]

$$
\left(\frac{2}{p}\right)=\left\{\begin{aligned}
1 & \text {;if } p \equiv 1(\bmod 8) \text { or } p \equiv 7(\bmod 8) \\
-1 & \text {;if } p \equiv 3(\bmod 8) \text { or } p \equiv 5(\bmod 8)
\end{aligned}\right.
$$

Theorem 4. If $p \neq 3$ is an odd prime, then [10]

$$
\left(\frac{3}{p}\right)=\left\{\begin{aligned}
1 & \text {;if } p \equiv \pm 1(\bmod 12) \\
-1 & \text {;if } p \equiv \pm 5(\bmod 12)
\end{aligned}\right.
$$

Lemma 5. Let n be an positive integer with $n \equiv 10(\bmod 15)$.The Diophantine equation $1+n^{y}=$ z^{2} has non-negative integer solution y and z are non-negative integers.

Proof Let n be an positive integer with $n \equiv 5(\bmod 20), y$ and z. are non-negative integers. Then we consider three cases.
Case 1 if $y=0$. Then $2=z^{2}$, is not possible.
Case 2 if $y=1$. Then $z^{2}-1=n$, we get $z^{2}-1 \equiv$ $1(\bmod 3)$ and $z^{2}-1 \equiv 0(\bmod 5)$ or $z^{2} \equiv 2(\bmod 3)$ and $z^{2} \equiv 1(\bmod 5)$. That is $\left(\frac{2}{3}\right)=-1$. By Theorem 3. In this case, there is no non-negative integer solution.

Case 3 if $y>1$. Then $z^{2}=1+n^{y}>11$. This implies $z>3$. Here $\min \{y, z\}>1$, by Lemma 1 , this equation has no solution.

3 Main theorem

Theorem 6. Let n be an positive integer $n \equiv 10$ $(\bmod 15) \cdot(1,0,3)$ is a unique solution (x, y, z) of the Diophantine equation $8^{x}+n^{y}=z^{2}$, where x, y and z are non-negative

Proof Let n be an positive integer $n \equiv 10$ $(\bmod 15)$, and x, y and z are non-negative integers .
Then there three cases by the following:
Case 1 if $x=0$. By Lemma 5, there is no nonnegative integers solution.
Case 2 if $x \geq 1$. and $y=0$. By Lemma 2, we have $x=1$ and $z=3$.
Case 3 if $x \geq 1$ and $y \geq 1$. Then we consider two cases.

Case $3.1 x$ is odd, we get $8^{x} \equiv 2(\bmod 5)$ or $8^{x} \equiv 3(\bmod 5)$. Therefor $z^{2}=8^{x}+n^{y} \equiv 3,2(\bmod 5)$.
That is $\left(\frac{2}{5}\right)=1$ and $\left(\frac{3}{5}\right)=1$. This is contradiction to Theorem 3 and Theorem 4, respectively. In this case, there is no non-negative integer solution.

Case $3.2 x$ is even, we get $8^{x} \equiv 1(\bmod 3)$.
Therefor $z^{2}=8^{x}+n^{y} \equiv 2(\bmod 3)$ That is $\left(\frac{2}{3}\right)=1$ This is contradiction to Theorem 3. In this case, there is no non-negative integer solution.

Therefore $(1,0,3)$ is unique solution (x, y, z) for the equation $8^{x}+n^{y}=z^{2}$ where x, y and z are non-negative integers.
Example $7(1,0,3)$ is a unique solution (x, y, z) for the Diophantine equation $8^{x}+10^{y}=z^{2}$, where x, y and z are non-negative integers.

Since $10 \equiv 10(\bmod 15)$, therefor by Theorem $6(1,0,3)$ is a unique solution (x, y, z) for the Diophantine equation $8^{x}+10^{y}=z^{2}$, where x, y and z are non-negative integers.

Example $8(1,0,3)$ is a unique solution (x, y, z) for the Diophantine equation $8^{x}+175^{y}=z^{2}$, where x, y and z are non-negative integers.

Since $\quad 175 \equiv 10(\bmod 15), \quad$ therefor by Theorem $6(1,0,3)$ is a unique solution (x, y, z) for the Diophantine equation $8^{x}+175^{y}=z^{2}$, where x, y and z are non-negative integers.

Corollary $9(1,0,3)$ is a unique solution (x, y, z) for the Diophantine equation $8^{x}+25^{y}=k^{4 t+6}$, where x, y and z are non-negative integers.
Proof :. Let $k^{2 t+3}=z$, for k and t are positive integer and $25 \equiv 10(\bmod 15)$ then Diophantine equation becomes $8^{x}+25^{y}=z^{2}$, therefor by Theorem $6(1,0,3)$ is a unique solution (x, y, z) for the Diophantine equation $8^{x}+25^{y}=k^{4 t+6}$, where x, y and z are non-negative integers.

References:

[1] Sroysang, Banyat, More on t he Diophantine equation $8^{x}+19^{y}=z^{2}$, International Journal of Pure and Applied Mathematics, Vol.81, 2012, pp. 601-604.
[2] Sroysang, Banyat, On the Diophantine equation $8^{x}+13^{y}=z^{2}$, International Journal of Pure and Applied Mathematics, Vol.90, No.1, 2014, pp. 69-72.
[3] Sroysang, Banyat, More on t he Diophantine equation $8^{x}+59^{y}=z^{2}$, International Journal of Pure and Applied Mathematics, Vol.91, No.1, 2014, pp. 139-142.
[4] Qi, Lan, and Xiaoxue Li, The Diophantine Equation $8^{x}+p^{y}=z^{2}$, The Scientific World Journal, 2015.
[5] Asthana, Shivangi, On the Diophantine Equation $8^{x}+113^{y}=z^{2}$, International Journal of Algebra, Vol.11, No.5, 2017, pp. 225 -230. https://doi.org/10.12988/ija.2017.7522
[6] Makate, Nonthiya, Srimud, Kulprapa, Warong, Apinya and Supjaroen, Wilawan, On The Diophantine Equations $8^{x}+61^{y}=z^{2}$ and $8^{x}+$ $67^{y}=z^{2}$, The Mathematical Association of Thailand Under The Patronage of His Majesty The King, Vol.64, No.697, 2019, pp. 24-29.
[7] Burshtein, Nechemia, On Solutions of the Diophantine Equation $8^{x}+9^{y}=z^{2}$ when x, y, z are Positive Integers, Annals of Pure and

Applied Mathematics, Vol.20, No.1, 2019, pp. 35-47.
[8] Elshahed, Amr and Kamarulhaili, Hailiza, On the Diophantine Equation $\left(4^{n}\right)^{x}-p^{y}=z^{2}$. WSEAS TRANSACTIONS on MATHEMATICS, Vol.19, 2020, pp. 349-352.
[9] Mihailescu, Preda, Primary cyclotomic units and a p roof of Catalan's conjecture, Journal Fur die reine und angewandte Mathematik, Vol.572, 2004, pp. 167-196.
[10] David M. Burton, Elementary Number Theory, 6th ed., McGraw-Hill, Singapore (2007).

Creative Commons Attribution License 4.0 (Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative Commons Attribution License 4.0 https://creativecommons.org/licenses/by/4.0/deed.en US

