บทที่ 6 โฮโมมอร์ฟิซึมและไอโซมอร์ฟิซึม

จากทั้ง 5 บทที่ผ่านมาทำให้รู้จักกรุป และคุณสมบัติต่าง ๆ ของกรุป ในบทนี้จะกล่าว ถึงความสัมพันธ์ระหว่างกรุปสองกรุปโดยอาศัยฟังก์ชันเป็นสื่อในการศึกษา เนื่องจากกรุปประกอบ ด้วย เซตและตัวดำเนินการ เราจึงสามารถแสดงความสัมพันธ์ระหว่ากรุปสองกรุปได้ ซึ่งมีลักษณะเช่น เดียวกันกับคณิตศาสตร์แขนงอื่น ๆ ที่ศึกษาความเหมือนของสองระบบที่เราสนใจ โดยอาศัยฟังก์ชัน พิเศษเป็นสื่อกลาง ในบทนี้จะแบ่งเป็นสองส่วน คือ โฮโมมอร์ฟิซึม และไอโซมอร์ฟิซึม ดังนี้

โฮโมมอร์ฟิซึม

้ปุณศยา พัฒนางกูร (2555: 146-148) ได้ให้นิยามและตัวอย่างของโฮโมมอร์ฟิซึม ดังนี้

บทนิยาม 6.1 กำหนดให้ (G,\cdot) และ (G',*) เป็นกรุปใด ๆ เรียกฟังก์ชัน heta:G o G' ว่าโฮโม มอร์ฟิซึมหรือสาทิสสัญฐาน (homomorphism) ก็ต่อเมื่อ

$$\theta(a \cdot b) = \theta(a) * \theta(b)$$
 สำหรับทุก $a, b \in G$

และเซตของโฮโมมอร์ฟิซึมทั้งหมดจาก G ไป G' เขียนแทนด้วยสัณลักษณ์ $\operatorname{Hom}(G,G')$

นอกจากนี้ ยังมีฟังก์ชันชนิดต่าง ๆ ดังบทนิยามต่อไปนี้

บทนิยาม 6.2 กำหนดให้ G และ G' เป็นกรุปใด ๆ เรียกโฮโมมอร์ฟิซึมจาก G ไป G ว่าเอนโด มอร์ฟิซึมหรืออันตรสัณฐาน (endomorphism) ของ G และเซตของเอนโดมอร์ฟิซึมทั้งหมดของ G เขียนแทนด้วยสัญลัษณ์ End(G) เรียกโฮโมมอร์ฟิซึมชนิดหนึ่งต่อหนึ่งจาก G ไป G' ว่าโมโน มอร์ฟิซึม (monomorphism) จาก G ไป G' และเซตของโมโนมอร์ฟิซึมทั้งหมดจาก G ไป G' เขียนแทนด้วยสัญลักษณ์ Mon(G,G') และเรียกโฮโมมอร์ฟิซึมจาก G ไปทั่วถึง G' ว่าอิพิมอร์ฟิ ซึม (epimorphism) จาก G ไป G' และเซตของอิพิมอร์ฟิซึมทั้งหมดจาก G ไป G' เขียนแทนด้วย สัญลักษณ์ Epi(G,G')

ข้อสังเกต จากบทนิยาม 6.1 และ 6.2 จะพบว่า

- 1. $\operatorname{End}(G) = \operatorname{Hom}(G, G)$
- 2. Mon $(G,G') = \{f \in \operatorname{Hom}(G,G') \mid f$ เป็นฟังก์ชันหนึ่งต่อหนึ่ง} Mon $(G,G') \subseteq \operatorname{Hom}(G,G')$
- 3. Epi $(G, G') = \{f \in \operatorname{Hom}(G, G') \mid f(G) = G'\}$ นั่นคือ Epi $(G, G') \subseteq \operatorname{Hom}(G, G')$

ตัวอย่างที่ 6.1 กำหนดให้ G เป็นกรุปใด ๆ และ $i_G: G \to G$ เป็นฟังก์ชันเอกลักษณ์ จงพิจารณาว่า ฟังก์ชัน i_G เป็นฟังก์ชันชนิดใด

วิธีทำ สมมติให้ $a, b \in G$ จาก $i_G(ab) = ab = i_G(a)i_G(b)$ ดังนั้น $i_G \in \operatorname{End}(G)$ และเนื่องจาก i_G เป็นฟังก์ชันก์หนึ่งต่อหนึ่งและฟังก์ชันทั่วถึง จะได้ว่า $i_G \in \operatorname{Mon}(G, G)$ และ $i_G \in \operatorname{Epi}(G, G)$

ตัวอย่างที่ 6.2 กำหนดให้ (G, \cdot) และ (G', *) เป็นกรุป และฟังก์ชัน $\theta : G \to G'$ กำหนดดังนี้ $\theta(a) = e'$ สำหรับทุก $a \in G$ เมื่อ e' เป็นสมาชิกเอกลักษณ์ของ G' จงพิจารณาว่าฟังก์ชัน θ เป็น ฟังก์ชันชนิดใด

วิธีทำ สมมติให้ $a, b \in G$ จะได้ว่า $\theta(a \cdot b) = e' = e' * e' = \theta(a) * \theta(b)$ ดังนั้น $\theta \in \operatorname{Hom}(G, G')$ และเรียก θ เช่นนี้ว่าฟังก์ชันศูนย์ (zero funtion)

ตัวอย่างที่ 6.3 กำหนดฟังก์ชัน $\theta: (\mathbb{R},+) \to (\mathbb{R}^+,\cdot)$ ดังนี้ $\theta(a) = 2^a$ สำหรับทุก $a \in G$ จงพิจารณาว่าฟังก์ชัน θ เป็นฟังก์ชันชนิดใด

วิธีทำ สมมติให้
$$a, b \in \mathbb{R}$$

จะได้ว่า $\theta(a+b) = 2^{a+b} = (2^a)(2^b) = \theta(a)\theta(b)$
จึงสรุปได้ว่า $\theta \in \operatorname{Hom}(\mathbb{R}, \mathbb{R}^+)$
ถ้าสมมติให้ $y \in \mathbb{R}^+$
จะได้ว่ามี $x = \log_2 y \in \mathbb{R}$ ที่ทำให้ $\theta(x) = \theta(\log_2 y) = 2^{\log_2 y} = y$
ดังนั้น θ เป็นฟังก์ชันทั่วถึง
นั่นคือ $\theta \in \operatorname{Epi}(\mathbb{R}, \mathbb{R}^+)$
ต่อไปสมมติให้ $\theta(a) = \theta(b)$
จะได้ว่า $2^a = 2^b$ ดังนั้น $a = b$
นั่นคือ θ เป็นฟังก์ชันหนึ่งต่อหนึ่ง เพราะฉะนั้น $\theta \in \operatorname{Mon}(\mathbb{R}, \mathbb{R}^+)$

ตัวอย่างที่ 6.4 กำหนดฟังก์ชัน $\theta:(\mathbb{Z},+)\to(\mathbb{Z},+)$ ดังนี้ $\theta(a)=3a$ สำหรับทุก $a\in G$ จงพิจารณาว่าฟังก์ชัน heta เป็นฟังก์ชันชนิดใด

วิธีทำ สมมติให้ $a, b \in \mathbb{Z}$ จะได้ว่า $\theta(a+b) = 3(a+b) = 3a+3b = \theta(a) + \theta(b)$ นั่นคือ $\theta \in \operatorname{End}(\mathbb{Z})$ ถ้าสมมติให้ $\theta(a) = \theta(b)$ จะได้ว่า 3a = 3b ดังนั้น a = bนั่นคือ θ เป็นฟังก์ชันหนึ่งต่อหนึ่ง เพระฉะนั้น $\theta \in \operatorname{Mon}(\mathbb{Z}, \mathbb{Z})$ ถ้า heta เป็นโฮโมมอร์ฟิซึม แล้ว heta จะมีสมบัติดังทฤษฎีบทต่อไปนี้

ทฤษฎีบท 6.3 กำหนดให้ G และ G' เป็นกรุปที่มี e และ e' เป็นสมาชิกเอกลักษณ์ของ G และ G'ตามลำดับ ถ้า $\theta \in \operatorname{Hom}(G, G')$ จะได้ว่า 1. $\theta(e) = e'$ 2. $\theta(a^{-1}) = \theta(a)^{-1}$ สำหรับทุก $a \in G$ 3. $\theta(a^k) = \theta(a)^k$ สำหรับทุก $a \in G$ และ $k \in \mathbb{Z}$ 4. $\theta(G)$ เป็นกรุปย่อยของ G'้กำหนดให้ (G, \cdot) และ (G', *) เป็นกรุปที่มี e และ e' เป็นสมาชิกเอกลักษณ์ การพิสูจน์ ของ G และ G' ตามลำดับ และ $\theta \in Hom(G, G')$ สมมติให้ $a \in G$ พิจารณา (1) $\theta(a) * e' = \theta(a) = \theta(a \cdot e) = \theta(a) * \theta(e)$ เนื่องจาก G' มีสมบัติการตัดออก ดังนั้น $e' = \theta(e)$ (2) สมมติให้ $a \in G$ เนื่องจาก $\theta(a^{-1}) * \theta(a) = \theta(a^{-1} \cdot a) = \theta(e) = e'$ $\theta(a) \ast \theta(a^{-1}) = \theta(a \cdot a^{-1}) = \theta(e) = e'$ และ ดังนั้น $\theta(a^{-1})$ เป็นตัวผกผันของ $\theta(a)$ แต่ $heta(a)^{-1}$ เป็นตัวผกผันของ heta(a) เช่นกัน จึงสรุปได้ว่า $heta(a^{-1})= heta(a)^{-1}$ (3) สมมติให้ $a \in G$ จะแบ่งการพิจารณาเป็น 3 กรณีดังนี้ กรณี $k \in \mathbb{N}$: กำหนดให้ P(k) แทนข้อความ " $\theta(a^k) = \theta(a)^k$ " ถ้า k=1 จะได้ P(1) คือ ข้อความ $heta(a^1)= heta(a)^1$ ซึ่งเป็นจริง ต่อไปให้ P(m) เป็นจริง เมื่อ $m \in \mathbb{N}$ นั่นคือ $\theta(a^m) = \theta(a)^m$ ดังนั้น $\theta(a^{m+1}) = \theta(a^m \cdot a) = \theta(a^m) * \theta(a) = \theta(a)^m * \theta(a) = \theta(a)^{m+1}$ เพราะฉะนั้น P(m+1) เป็นจริง โดยหลักการอุปนั้ยเชิงคณิตศาสตร์ ได้ว่า $heta(a^k)= heta(a)^k$ สำหรับทุก $k\in\mathbb{N}$ กรณี $k=0: \theta(a^k)=\theta(a^0)=\theta(e)=e'=\theta(a)^0=\theta(a)^k$ กรณี $k \in \mathbb{Z}^-$: จะได้ว่า k = -m สำหรับบาง $m \in \mathbb{N}$ ทำให้ได้ว่า $\theta(a^k) = \theta(a^{-m}) = \theta((a^{-1})^m) = (\theta(a)^{-1})^m = \theta(a)^{-m} = \theta(a)^k$ นั้นคือ $\theta(a^k) = \theta(a)^k$ สำหรับทุก $k \in \mathbb{Z}^-$ ้จากทั้ง 3 กรณี จึงสรุปได้ว่า $heta(a^k)= heta(a)^k$ สำหรับทุก $k\in\mathbb{Z}$

(4) เนื่องจาก
$$e' \in \theta(G)$$

ดังนั้น $\theta(G) \neq \emptyset$
ต่อไปให้ $\theta(a), \theta(b) \in \theta(G)$
เพราะฉะนั้น $a, b \in G$
เนื่องจาก $a \cdot b \in G$ และ $\theta(a) * \theta(b) = \theta(a \cdot b)$
ดังนั้น $\theta(a) * \theta(b) \in \theta(G)$
สำหรับ $\theta(a) \in \theta(G)$ จะได้ว่า $\theta(a)^{-1}$ เป็นตัวผกผันของ $\theta(a)$
และจาก $a^{-1} \in G$ ดังนั้น $\theta(a)^{-1} = \theta(a^{-1}) \in \theta(G)$
สรุปได้ว่า $\theta(G) \leq G'$

วิธีหนึ่งที่ใช้ในการตรวจสอบความเป็นฟังก์ชันหนึ่งต่อหนึ่งของโฮโมมอร์ฟิซึม $\theta:G\to G'$ ทำได้ โดยพิจารณาเซตย่อยพิเศษของ G ที่เรียกว่าแก่นกลาง หรือเคอร์เนล (kernel) ของ θ ดังบท นิยามต่อไปนี้

บทนิยาม 6.4 กำหนดให้ G และ G' เป็นกรุปใด ๆ และ $\theta \in \operatorname{Hom}(G,G')$ นิยาม $\ker(\theta) = \{g \in G \mid \theta(g) = e'\}$

เมื่อ e' คือ สมาชิกเอกลักษณ์ของ G' จะเรียก $\ker(\theta)$ ว่าแก่นกลาง หรือเคอร์เนล (kernel) ของ θ

ข้อสังเกต เนื่องจาก $\theta(e)=e'$ เมื่อ e คือ สมาชิกเอกลักษณ์ของ G ดังนั้น $e\in \ker(\theta)$ นั่นคือ $\ker(\theta)\neq \varnothing$

ทฤษฎีบท 6.5 ถ้า G และ G' เป็นกรุปใด ๆ และ $\theta \in \operatorname{Hom}(G,G')$ แล้ว

- 1. ker(heta) เป็นกรุปย่อยปรกติของ G
- 2. heta เป็นฟังก์ชันหนึ่งต่อหนึ่ง ก็ต่อเมื่อ ker $(heta) = \{e\}$

- การพิสูจน์ กำหนดให้ G และ G' เป็นกรุปใด ๆ ที่มี e และ e' เป็นสมาชิกเอกลักษณ์ของ G และ G' ตามลำดับ และ $\theta \in \operatorname{Hom}(G,G')$
 - (1) สมมติให้ $K = \ker(\theta)$ จะแสดงว่า K เป็นกรุปย่อยปรกติของ Gให้ $a,b\in K$ ดังนั้น heta(a)=e' และ heta(b)=e'พิจารณา $\theta(ab) = \theta(a)\theta(b) = e'e' = e'$ เพราะฉะนั้น $ab \in K$ นอกจากนี้ยังได้ว่า $\theta(a^{-1}) = \theta(a)^{-1} = (e')^{-1} = e'$ นั้นคือ $a^{-1} \in K$ จึงได้ว่า K < Gต่อไปให้ $g\in G$ และ $gkg^{-1}\in gKg^{-1}$ เมื่อ $k\in K$ พิจารณา $\theta(gkg^{-1}) = \theta(g)\theta(k)\theta(g^{-1}) = \theta(g)e'\theta(g^{-1}) = \theta(g)\theta(g^{-1}) = e'$ นั่นคือ $gkg^{-1}\in K$ จึงได้ว่า $gKg^{-1}\subseteq K$ เพราะฉะนั้น Kเป็นกรุปย่อยปรกติของ G(2) สมมติให้ θ เป็นฟังก์ชันหนึ่งต่อหนึ่ง และ $a \in \ker(\theta)$ ดังนั้น $\theta(a) = e'$ เนื่องจาก $\theta(e) = e'$ ดังนั้น a = e นั่นคือ $\ker(\theta) = \{e\}$ ในทางกลับกัน สมมติให้ $\ker(heta) = \{e\}$ และ $\theta(a) = \theta(b)$ เมื่อ $a, b \in G$ ดังนั้น $\theta(a)\theta(b)^{-1} = e'$ แต่เนื่องจาก $\theta(a)\theta(b)^{-1} = \theta(a)\theta(b^{-1}) = \theta(ab^{-1})$ เพราะฉะนั้น $\theta(ab^{-1}) = e'$ นั่นคือ $ab^{-1} \in \ker(\theta) = \{e\}$ ดังนั้น $ab^{-1} = e$ จึงได้ว่า a = b นั่นคือ θ เป็นฟังก์ชันหนึ่งต่อหนึ่ง

ไอโซโมมอร์ฟิซึม

บทนิยาม 6.6 กำหนดให้ G และ G' เป็นกรุปใด ๆ และ $\theta \in \operatorname{Hom}(G, G')$ เรียก θ ว่าไอโซมอร์ฟิ ซึมหรือสมสัณฐาน (isomorphism) ก็ต่อเมื่อ θ เป็นฟังก์ชันหนึ่งต่อหนึ่งจาก G ทั่วถึง G' และเซต ของไอโซมอร์ฟิซึมทั้งหมดจาก G ไป G' เขียนแทนด้วยสัญลักษณ์ Iso(G, G') และจะกล่าวว่า G ไอโซมอร์ฟิคกับ G' (G is isomorphic to G') ก็ต่อเมื่อ มีไอโซมอร์ฟิซึมจาก G ไป G' และใช้ สัญลักษณ์ $G \cong G'$ แทนข้อความที่ว่า G ไอโซมอร์ฟิคกับ G' เรียกไอโซมอร์ฟิซึมจาก G ไป G ว่า ออโตมอร์ฟิซึมหรืออัตสัณฐาน (automorphism) ของ G และเซตของออโตมอร์ฟิซึมทั้งหมดของ G เขียนแทนด้วยสัญลักษณ์ Aut(G)

ข้อสังเกต 1. $\operatorname{Aut}(G) = \operatorname{Iso}(G,G)$

2. $\operatorname{Aut}(G) \subseteq \operatorname{End}(G)$

- 3. Iso $(G, G') \subseteq \operatorname{Hom}(G, G')$
- 4. Iso $(G,G') = \operatorname{Mon}(G,G') \cap \operatorname{Epi}(G,G')$

หมายเหตุ กำหนดให้ G, G' และ G'' เป็นกรุปใด ๆ จะได้ว่า

- 1. เนื่องจากมีฟังก์ชันเอกลักษณ์ $i_G:G \xrightarrow{1-1}_{anto} G$ โดยที่ $i_G \in \operatorname{End}(G)$ ดังนั้น $G \cong G$
- 2. สมมติให้ $G \cong G'$ ดังนั้น จะมี $\theta \in \mathsf{lso}(G,G')$

พิจารณาฟังก์ชัน $\theta^{-1}: G' \to G$ จะได้ว่า θ^{-1} เป็นฟังก์ชันหนึ่งต่อหนึ่งจาก G' ทั่วถึง Gถ้าสมมติให้ $b_1, b_2 \in G'$ เนื่องจาก θ เป็นฟังก์ชันทั่วถึง จะได้ว่า $b_1= heta(a_1)$ และ $b_2= heta(a_2)$ สำหรับบาง $a_1,a_2\in G$ ดังนั้น $\theta^{-1}(b_1)\theta^{-1}(b_2) = \theta^{-1}(\theta(a_1))\theta^{-1}(\theta(a_2))$ $i = i_G(a_1)i_G(a_2)$ (เนื่องจาก θ เป็นฟังก์ชันหนึ่งต่อหนึ่งทั่วถึง) $= a_1 a_2$ $= i_G(a_1a_2)$ $= \theta^{-1}(\theta(a_1a_2))$ $= \theta^{-1}(\theta(a_1)\theta(a_2))$ (เนื่องจาก $\theta \in \operatorname{Hom}(G, G'))$ $= \theta^{-1}(b_1b_2)$ จึงได้ว่า $\theta^{-1} \in \operatorname{Hom}(G', G)$ ดังนั้น $\theta' \in \mathsf{lso}(G', G)$ นั่นคือ $G' \cong G$ 3. สมมติให้ $G \cong G'$ และ $G' \cong G''$ จะได้ว่ามี $\theta \in \operatorname{Iso}(G,G')$ และ $\alpha \in \operatorname{Iso}(G',G'')$ พิจารณาฟังก์ชัน $\alpha \circ \theta : G \longrightarrow G''$ จะได้ว่า $\alpha \circ \theta$ เป็นฟังก์ชันหนึ่งต่อหนึ่งจาก G ทั่วถึง G''นอกจากนี้ยังได้ว่า สำหรับ $a_1,a_2\in G$ จะได้ว่า $(\alpha \circ \theta)(a_1)(\alpha \circ \theta)(a_2) = (\alpha(\theta(a_1))(\alpha(\theta(a_2)))$ $= (\alpha(\theta(a_1)(\theta(a_2)))$ (เนื่องจาก $\alpha \in \operatorname{Hom}(G', G''))$ $= (\alpha(\theta(a_1a_2))$ (เนื่องจาก $\theta \in \operatorname{Hom}(G,G'))$ $= (\alpha \circ \theta)(a_1a_2)$ จึงได้ว่า $\alpha \circ \theta \in \operatorname{Hom}(G, G'')$ ดังนั้น $\alpha \circ \theta \in \mathsf{lso}(G', G'')$ นั่นคือ $G \cong G''$

ในเรื่องไอโซมอร์ฟิคของกรุปนั้น มีตัวอย่างสำคัญที่ควรทราบดังทฤษฎีบทต่อไป

จาก 1., 2. และ 3. สรุปได้ว่า์ ≅ เป็นความสัมพันธ์สมมูล

ทฤษฎีบท 6.7 ทุกกรุปวัฏจักรอนันต์จะไอโซมอร์ฟิคกับกรุป $(\mathbb{Z},+)$ และทุกกรุปวัฏจักรจำกัดจะไอ โซมอร์ฟิคกับกรุป $(\mathbb{Z}_n,+_n)$

กำหนดให้ G เป็นกรุปวัฏจักรที่มี e เป็นสมาชิกเอกลักษณ์ การพิสูจน์ ดังนั้น จะมี $q \in G$ ที่ทำให้ $G = \{q^n | n \in \mathbb{Z}\}$ ้จะแสดงว่า ทุกกรุปวัฏจักรที่เป็นกรุปอนันต์จะไอโซมอร์ฟิคกับกรุป $(\mathbb{Z},+)$ โดยสมมติให้ G เป็นกรุปอนันต์ พิจารณาฟังก์ชัน $heta:G\longrightarrow \mathbb{Z}$ ที่กำหนดโดย $\theta(g^k) = k$ สำหรับทุก $k \in \mathbb{Z}$ กำหนดให้ $i,j\in\mathbb{Z}$ จะได้ว่า $g^i,g^j\in G$ เนื่องจาก G เป็นกรุปอนันต์ จึงได้ว่า $g^i = g^j$ ก็ต่อเมื่อ i = jเพราะฉะนั้น heta เป็นฟังก์ชันหนึ่งต่อหนึ่ง สำหรับแต่ละ $j \in \mathbb{Z}$ จะมี $q^j \in G$ ที่ทำให้ $\theta(q^j) = j$ ้ดังนั้น heta เป็นฟังก์ชันทั่วถึง $\mathbb Z$ เนื่องจาก $\theta(q^i q^j) = \theta(q^{i+j}) = i + j = \theta(q^i) + \theta(q^j)$ ดังนั้น $\theta \in \operatorname{Hom}(G, \mathbb{Z})$ จึงสรุปได้ว่า $heta \in \mathsf{Iso}(G,\mathbb{Z})$ นั่นคือ $G \cong \mathbb{Z}$ ต่อไปจะแสดงว่า ทุกกรุปวัฏจักรจำกัดไอโซมอร์ฟิคกับกรุป $(\mathbb{Z}_n,+_n)$ สมมติให้ G เป็นกรุปจำกัดที่มีอันดับ nเนื่องจาก n เป็นจำนวนเต็มบวกที่น้อยที่สุดที่ทำให้ $a^n=e$ จะได้ว่า $G = \{a^0, a, ..., a^{n-1}\}$ พิจารณาฟังก์ชัน $\theta: G \longrightarrow \mathbb{Z}_n$ ที่กำหนดโดย $\theta(a^k) = [k]$ สำหรับทก $0 \le k \le n-1$ สมมติให้ $a^i, a^j \in G$ โดยที่ $\theta(a^i) = \theta(a^j)$ ดังนั้น [i] = [j] ซึ่ง $0 \leq i \leq n-1$ และ $0 \leq j \leq n-1$ ้จะได้ว่า i=j นั่นคือ $a^i=a^j$ จึงได้ว่า heta เป็นฟังก์ชันหนึ่งต่อหนึ่ง ถ้า $[k] \in \mathbb{Z}_n$ จะได้ว่า $0 \le k \le n-1$ เพราะฉะนั้น มี $a^k \in G$ ที่ทำให้ $\theta(a^k) = [k]$ นั่นคือ θ เป็นฟังก์ชันทั่วถึง ต่อไปสมมติให้ $a^i, a^j \in G$ ถ้า *i* + *j* < *n* แล้ว $\theta(a^i a^j) = \theta(a^{i+j}) = [i+j] = \theta(a^i) + \theta(a^j)$ ถ้า i + j > n จะได้ว่า $\theta(a^i a^j) = \theta(a^{i+j-n}) = [i+j-n]$ = [i] + [j] + [-n]= [i] + [j] $= \theta(a^i) + \theta(a^j)$ ดังนั้น $\theta \in \operatorname{Hom}(G, \mathbb{Z}_n)$ จึงสรุปได้ว่า $\theta \in \operatorname{Iso}(G, \mathbb{Z}_n)$ นั่นคือ $G \cong \mathbb{Z}_n$

ทฤษฎีบท 6.8 ทฤษฎีบทเคย์เลย์ (Cayley's Theorem) กำหนดให้ G เป็นกรุปใด ๆ จะได้ว่า G ไอโซมอร์ฟิคกับบางกรุปย่อยของ

$$A(G)$$
 เมื่อ $A(G) = \{ f \mid f : G \xrightarrow[onto]{onto} G \}$

สำหรับแต่ละ $g \in G$ จะกำหนดฟังก์ชัน $f_q: G \longrightarrow G$ ดังนี้ การพิสูจน์ $f_a(x) = gx$ สำหรับทุก $x \in G$ ต่อไปสมมติให้ $a \in G$ ถ้าให้ $b \in G$ แล้วจะมี $a^{-1}b \in G$ ที่ทำให้ $f_a(a^{-1}b) = a(a^{-1}b) = (aa^{-1})b = eb = b$ ดังนั้น f_a เป็นฟังก์ชันทั่วถึง Gสมมติให้ $f_a(x_1) = f_a(x_2)$ เมื่อ $x_1, x_2 \in G$ จะได้ว่า $ax_1 = ax_2$ นั่นคือ $x_1 = x_2$ จึงได้ว่า f_a เป็นฟังก์ชันหนึ่งต่อหนึ่ง เพราะฉะนั้น $f_a \in A(G)$ ้จึงสรุปได้้ว่า $f_g \in A(G)$ สำหรับทุก $g \in G$ สมมติให้ $H = \{ f_q \mid g \in G \}$ จะได้ว่า $H \subseteq A(G)$ พิจารณาฟังก์ชัน $\theta: G \longrightarrow A(G)$ ที่กำหนดโดย $\theta(q) = f_q$ สำหรับทุก $q \in G$ เห็นได้ชัดว่า θ เป็นฟังก์ชันจาก G ทั่วถึง H นั่นคือ $\theta(G) = H$ ต่อไปสมมติให้ $e,g \in G$ จะได้ว่า สำหรับทุก $x \in G$ $f_g(x) = f_{eg}(x) = (eg)x = e(gx)$ $= e(f_q(x)) = f_e(f_q(x)) = (f_e \circ f_q)(x)$ ในทำนองเดียวกัน จะได้ว่า $f_q(x) = (f_q \circ f_e)(x)$ สำหรับทุก $x \in G$ นั้นคือ $f_g = f_e \circ f_g = f_g \circ f_e$ เพราะฉะนั้น f_e เป็นสมาชิกเอกลักษณ์ของ A(G)ต่อไปจะแสดงว่า heta เป็นฟังก์ชันหนึ่งต่อหนึ่ง ให้ $k \in \ker(heta)$ จะได้ว่า $heta(k) = f_e$ นั่นคือ $f_k = f_e$ ดังนั้น $f_e(e) = f_k(e)$ จึงได้ว่า e = ee = ke = kนั่นคือ ker $(\theta) = \{e\}$ ดังนั้น θ เป็นฟังก์ชันหนึ่งต่อหนึ่ง จึงสรุปได้ว่า $G \cong H$

หมายเหตุ เรียกกรุป H ในทฤษฎีบท 6.8 ว่าตัวแทนการเรียงสับเปลี่ยนของ G (the permutation representation of G)

้ ตัวอย่างที่ 6.5 กำหนดให้ $G=(\mathbb{Z}_3,+_3)$ จงหาตัวอย่างของตัวแทนการเรียงสับเปลี่ยนของกรุป G

พิจารณา A(G) คือกรุปการเรียงสับเปลี่ยนที่มีสมาชิก 6 ตัวดังนี้

$ \begin{array}{c} [0] \longrightarrow [0] \\ e: [1] \longrightarrow [1] \\ [2] \longrightarrow [2] \end{array} $	$\begin{array}{c} [0] \longrightarrow [1] \\ \alpha : [1] \longrightarrow [0] \\ [2] \longrightarrow [2] \end{array}$	$ \begin{array}{c} [0] \longrightarrow [1] \\ \beta : [1] \longrightarrow [2] \\ [2] \longrightarrow [0] \end{array} $
$ \begin{array}{c} [0] \longrightarrow [2] \\ \gamma : [1] \longrightarrow [1] \\ [2] \longrightarrow [0] \end{array} $	$ \begin{array}{c} [0] \longrightarrow [0] \\ \delta : [1] \longrightarrow [2] \\ [2] \longrightarrow [1] \end{array} $	$ \begin{array}{c} [0] \longrightarrow [2] \\ \theta : [1] \longrightarrow [0] \\ [2] \longrightarrow [1] \end{array} $

โดยทฤษฎีบทเคย์เลย์ จะได้ว่า $G \cong \{f_g \mid g \in G\}$ พิจารณาสมาชิกใน $\{f_g \mid g \in G\}$ จะได้ว่า $f_{[0]} = e, f_{[1]} = \beta$ และ $f_{[2]} = \theta$ นั่นคือ $G \cong \{e, \beta, \theta\}$ จึงได้ว่าตัวแทนการเรียงสับเปลี่ยนของ G คือ $\{e, \beta, \theta\}$

ทฤษฎีบทต่อไปนี้จะแสดงให้เห็นว่ามีโฮโมมอร์ฟิซึมจากกรุป G ทั่วถึงกรุปผลหารของ G เสมอ และเรียกโฮโมมอร์ฟิซึมดังกล่าวนี้ว่าโฮโมมอร์ฟิซึมธรรมชาติ (natural homomorphism)

ทฤษฎีบท 6.9 กำหนดให้ N เป็นกรุปย่อยปรกติของกรุป G และฟังก์ชัน heta : $G \longrightarrow G/N$ กำหนดโดย

$$\theta(a) = Na$$
 สำหรับทุก $a \in G$

จะได้ว่า $\theta \in \operatorname{Epi}(G, G/N)$ โดยที่ $\ker(\theta) = N$

การพิสูจน์ กำหนดให้ N เป็นกรุปย่อยปรกติของกรุป G ให้ฟังก์ชัน $\theta: G \longrightarrow G/N$ กำหนดโดย $\theta(a) = Na$ สำหรับทุก $a \in G$ สมมติให้ $a, b \in G$ จะได้ว่า $\theta(ab) = N(ab) = (Na)(Nb) = \theta(a)\theta(b)$ ดังนั้น $\theta \in \text{Hom}(G, G/N)$ สำหรับแต่ละ $Na \in G/N$ จะมี $a \in G$ ที่ทำให้ $\theta(a) = Na$ นั่นคือ θ เป็นฟังก์ชันทั่วถึง G/Nดังนั้น $\theta \in \text{Epi}(G, G/N)$ นอกจากนี้ ยังได้อีกว่า $\ker(\theta) = \{a \in G | \theta(a) = N\}$ $= \{a \in G | Na = N\}$ $= \{a \in G | a \in N\}$ = N

กำหนดให้ G และ G' เป็นกรุปโดยแม้ว่ามี $\alpha \in \operatorname{Epi}(G,G')$ จะได้ว่า ถ้า $\ker(\alpha) \neq \{e\}$

ก็ไม่อาจสรุปได้ว่า $G \cong G'$ อย่างไรก็ตามโดยอาศัยแนวคิดของทฤษฎีบท 6.9 จะพิสูจน์ได้ว่ากรุปผล หาร $G/\ker(\alpha)\cong G'$ ซึ่งเป็นสมบัติสำคัญอันหนึ่งทางพีชคณิต ดังกล่าวในทฤษฎีบทต่อไปนี้

ทฤษฎีบท 6.10 ทฤษฎีบทหลักมูลโฮโมมอร์ฟิซึม (The funamental homomorphism theorem) กำหนดให้ G และ G' เป็นกรุป โดยมี $\alpha \in \operatorname{Epi}(G,G')$ และ $\ker(\alpha) = K$ จะได้ว่า $G/K \cong G'$

การพิสูจน์ กำหนดให้ G และ G' เป็นกรุป e' เป็นสมาชิกเอกลักษณ์ของ G' และ $\alpha \in \operatorname{Epi}(G,G')$ สมมติให้ $K = \ker(\alpha)$ โดยทฤษฎีบท 6.5 จะได้ว่า K เป็นกรุปย่อยปรกติของ Gโดยทฤษฎีบทเคย์เลย์ ทำให้ได้ว่าฟังก์ชัน $\theta: G \longrightarrow G/K$ ที่กำหนดโดย $\theta(a) = Ka$ สำหรับทุก $a \in G$

เป็นโฮโมมอร์ฟิซึมจาก G ทั่วถึง G/N พิจารณาแผนภาพต่อไปนี้

กำหนดฟังก์ชัน $\beta: G/K \longrightarrow G'$ โดยที่ $\beta(Ka) = \alpha(a)$ สำหรับทุก $Ka \in G/N$ จะแสดงว่า β เป็นฟังก์ชัน สมมติให้ $Ka, Kb \in G/N$ และ Ka = Kbเนื่องจาก $a = ea \in Ka$ ดังนั้น $a \in Kb$ และจะมี $k \in K$ ที่ทำให้ a = kb เพราะฉะนั้น $\beta(Ka) = \alpha(a) = \alpha(kb) = \alpha(k)\alpha(b) = e'\alpha(b) = \alpha(b) = \beta(Kb)$ ดังนั้น β เป็นฟังก์ชัน และเนื่องจาก α เป็นฟังก์ชันทั่วถึง G'ดังนั้น ถ้า $g' \in G'$ แล้วจะมี $g \in G$ ที่ทำให้ $\alpha(g) = g'$ ทำให้ได้ว่ามี $Kg \in G/K$ ที่ทำให้ $\beta(Kg) = \alpha(g) = g'$ จึงได้ว่า β เป็นฟังก์ชันทั่วถึง G'ต่อไปจะแสดงว่า β เป็นโฮโมมอร์ฟิซึม สมมติให้ $Kx, Ky \in G/K$ เนื่องจาก $\beta((Kx)(Ky)) = \beta(K(xy)) = \alpha(xy)$ $= \alpha(x)\alpha(y) = \beta(Kx)\beta(Ky)$ ดังนั้น $\beta \in \operatorname{Hom}(G/N, G')$ ต่อไปจะแสดงว่า β เป็นฟังก์ชันหนึ่งต่อหนึ่ง ให้ $Kz \in \ker(\beta)$ ดังนั้น $\beta(Kz) = e'$ นั่นคือ $\alpha(z) = e'$ จึงได้ว่า $z \in \ker(\alpha) = K$ เพราะฉะนั้น Kz = Kแต่ K เป็นสมาชิกเอกลักษณ์ของกรุป G/K ซึ่ง $K \in \ker(\beta)$ ดังนั้น $\ker(\beta) = \{K\}$ และจะได้ว่า β เป็นฟังก์ชันหนึ่งต่อหนึ่ง จึงสรุปได้ว่า $\beta \in \operatorname{Iso}(G/K, G')$ นั่นคือ $G/K \cong G'$

สรุปท้ายบท

จากเนื้อหาที่กล่าวมาข้างต้นพบว่า การสร้างฟังก์ชันทั้งโฮโมมอร์ฟิซึมและไอโซมอร์ฟิซึม ทำให้ เกิดทฤษฎีที่สำคัญ ทั้งทฤษฎีเคเลย์ ซึ่งสามารถบอกได้ว่า ไม่ว่าจะเลือกกรุปใดขึ้นมา กรุปนั้นจะ ต้องไอโซมอร์ฟิคกับบางกรุปย่อยของ A(G) และทฤษฎีบทหลักมูลโฮโมมอร์ฟิซึม ซึ่งนับเป็นหนึ่งใน ทฤษฎีของพีชคณิตนามธรรมที่มีประโยชน์และถูกนำไปต่อยอดทางทฤษฎีอย่างกว้างขวาง รวมถึงเป็น แนวทาง และต้นแบบเมื่อมีการขยายแนวคิดเชิงทฤษฎี เพื่อทำให้เกิดประโยชน์ในวงกว้างต่อไป