บทที่ 7 ริงและสมบัติเบื้องต้นของริง

สำหรับ 6 บทที่ผ่านมาได้ศึกษาโครงสร้างทางพีชคณิตที่ประกอบด้วยเซตกับการดำเนินการ ทวิภาคบนเชตนั้นเพียงการดำเนินการทวิภาคเดียว ในบทนี้จะศึกษาโครงสร้างทางพีชคณิตที่ซับซ้อน กว่าเดิม คือ ประกอบด้วยเซตที่มีการดำเนินการทวิภาคบนเซตนั้นสองการดำเนินการทวิภาคที่แตก ต่างกันซึ่งถูกเรียกว่าริง (ring) โดยแบ่งเนื้อหาออกเป็น 3 ส่วน ในส่วนแรกจะกล่าวถึงสมบัติเบื้องต้น ของริงและริงผลหาร ในส่วนที่สองจะกล่าวถึงความสัมพันธ์ระหว่างริงสองริงโดยใช้ฟังก์ชันเป็นตัว พิจารณา นั่นคือ โฮโมมอร์ฟิซึมและไอโซมอร์ฟิซึม และส่วนสุดท้ายจะกล่าวถึงริงพหุนาม ดังนี้

บทนิยามและตัวอย่างของริง

บทนิยาม 7.1 กำหนดให้ R เป็นเซตที่ไม่ใช่เซตว่างและกำหนด + (การบวก) และ \cdot (การคูณ) เป็นการดำเนินการทวิภาคบน R จะเรียกระบบคณิตศาสตร์ $(R,+,\cdot)$ ว่าริง (ring) ก็ต่อเมื่อ

- 1. (R,+) เป็นอาบีเลียนกรุป
- 2. (R,\cdot) เป็นกึ่งกรุป และ
- 3. $a\cdot(b+c)=(a\cdot b)+(a\cdot c)$ และ $(b+c)\cdot a=(b\cdot a)+(c\cdot a)$

สำหรับทุก $a,b,c\in R$ (เราเรียกสมบัติการแจกแจง (distributive property))

จากบทนิยาม 7.1 จะได้ว่า ถ้า $(R,+,\cdot)$ เป็นริง แล้ว (R,+) เป็นอาบีเลียนกรุป ดังนั้น R จะมีสมาชิกเอกลักษณ์สำหรับการบวกเสมอ และเราจะเขียนแทนสมาชิกเอกลักษณ์ของกรุป (R,+) ด้วยสัญลักษณ์ 0 ซึ่งเรียกสมาชิกเอกลักษณ์สำหรับการบวก (additive identity element) หรือ สมาชิกศูนย์ (zero element) ของริง $(R,+,\cdot)$ นอกจากนี้ จะได้ว่า ถ้า $(R,+,\cdot)$ เป็นริง แล้ว (R,+) เป็นอาบีเลียนกรุป ดังนั้น R สมบัติต่าง ๆ เกี่ยวกับกรุปที่เราได้ศึกษามาแล้วสามารถนำมา ใช้ได้ แต่สำหรับ (R,\cdot) เป็นเพียงกึ่งกรุปเท่านั้น ดังนั้น อาจไม่มีสมบัติการสลับที่ และอาจจะไม่มี สมาชิกเอกลักษณ์สำหรับการคูณ สัญลักษณ์การดำการทวิภาค + (การบวก) และ \cdot (การคูณ) เป็น สัญลักษณ์ที่แทนการดำเนินการใด ๆ ก็ได้โดยไม่จำเป็นต้องเป็นการดำเนินการการบวกและการคูณ ในเรื่องของระบบจำนวนจริง ซึ่งเรามักเรียกการดำเนินการแรกของริงว่าการบวก และเรียกการดำเนิน การหลังของริงว่าการคูณ

เห็นได้ชัดว่าเช[®]ตของจำนวนเต็ม $\mathbb Z$ เซตของจำนวนตรรกยะ $\mathbb Q$ และเซตของจำนวนจริง $\mathbb R$ กับ การบวก และการคูณปกติเป็นริง เซตของจำนวนเต็มมอดุโล n $(\mathbb Z_n)$ กับการบวกในมอดุโล n $(+_n)$ และการคูณในมอดุโล n (\cdot_n) เป็นริง นอกจากนี้ยังมีตัวอย่างอื่น ๆ ดังนี้

ตัวอย่างที่ 7.1 กำหนดให้ $R=\{f\mid f:\mathbb{R}\longrightarrow\mathbb{R}\}$ และสำหรับ $f,\mathbf{g}\in\mathbb{R}$ กำหนดการบวก และ การคูณบนเซต R ดังนี้

$$(f+{\sf g})(x)=f(x)+{\sf g}(x)$$
 และ $(f\cdot{\sf g})(x)=f(x){\sf g}(x)$ สำหรับทุก $x\in\mathbb{R}$

จงพิจารณาว่า $(R,+,\cdot)$ เป็นริงหรือไม่ อย่างไร

วิธีทำ จะแสดงว่า (R,+) เป็นอาบีเลียนกรุป

- (1) ให้ $f,g\in R$ จาก $(f+g)(x)=f(x)+\mathbf{g}(x)\in \mathbb{R}$ สำหรับทุก $x\in \mathbb{R}$ จึงได้ว่า $f+g:\mathbb{R}\longrightarrow \mathbb{R}$ ดังนั้น $f+g\in R$ นั่นคือ (R,+) มีสมบัติปิด
- (2) สำหรับ $f, g, h \in R$ พิจารณา

$$((f+g)+h)(x) = (f+g)(x) + h(x)$$

$$= (f(x)+g(x)) + h(x)$$

$$= f(x) + (g(x)+h(x))$$

$$= f(x) + (g+h)(x)$$

$$= (f+(g+h))(x)$$

สำหรับทุก $x\in\mathbb{R}$ ดังนั้น (f+g)+h=f+(g+h) นั่นคือ (R,+) มีสมบัติการเปลี่ยนหมู่

- (3) มีฟังก์ชั้นศูนย์ เป็นสมาชิกเอกลักษณ์ นั่นคือ (R,+) มีสมบัติการมีเอกลักษณ์
- (4) ให้ $f\in R$ ดังนั้น $f(x)\in R$ นิยามฟังก์ชัน g โดย g(x)=-f(x) สำหรับทุก $x\in \mathbb{R}$ จะได้ว่า $g\in R$ และ

$$(f+g)(x) = f(x) + g(x) = f(x) - f(x) = 0$$
$$(g+f)(x) = g(x) + f(x) = -f(x) + f(x) = 0$$

ดังนั้น f+g และ g+f เป็นฟังก์ชันศูนย์ นั่นคือ (R,+) มีสมบัติการมีอินเวอร์ส

(5) จากจำนวนจริงมีสมบัติการสลับที่ภายใต้การบวก ดังนั้น (R,+) มีสมบัติการสลับที่ จาก (1), (2), (3), (4) และ (5) จะได้ว่า (R,+) เป็นอาบีเลียนกรุป ต่อไปจะแสดงว่า (R,\cdot) เป็นกึ่งกรุป

- (6) ให้ $f,g\in R$ จาก $(f\cdot g)(x)=f(x)\cdot \mathbf{g}(x)\in \mathbb{R}$ สำหรับทุก $x\in \mathbb{R}$ จึงได้ว่า $f\cdot g:\mathbb{R}\longrightarrow \mathbb{R}$ ดังนั้น $f\cdot g\in R$ นั่นคือ (R,\cdot) มีสมบัติปิด
- (7) สำหรับ $f, g, h \in R$ พิจารณา

$$((f \cdot g) \cdot h)(x) = (f \cdot g)(x) \cdot h(x)$$
$$= (f(x) \cdot g(x)) \cdot h(x)$$
$$= f(x) \cdot (g(x) \cdot h(x))$$
$$= f(x) \cdot (g \cdot h)(x)$$
$$= (f \cdot (g \cdot h))(x)$$

สำหรับทุก $x\in\mathbb{R}$ ดังนั้น $(f\cdot g)\cdot h=f\cdot (g\cdot h)$ นั่นคือ (R,\cdot) มีสมบัติการเปลี่ยนหมู่ จาก (6) และ (7) จะได้ว่า (R,\cdot) เป็นกึ่งกรุป

(8) สำหรับ $f,g,h\in R$ และ $x\in\mathbb{R}$ พิจารณา

$$(f \cdot (g+h))(x) = f(x) \cdot (g+h)(x)$$

$$= f(x) \cdot (g(x) + h(x))$$

$$= f(x) \cdot g(x) + f(x) \cdot h(x)$$

$$= (f \cdot g)(x) + (f \cdot h)(x)$$

$$= ((f \cdot g) + (f \cdot h))(x)$$

ดังนั้น $f\cdot(g+h)=f\cdot g+f\cdot h$ สำหรับทุก $x\in\mathbb{R}$ ในทำนองเดียวกัน จะได้ว่า $(g+h)\cdot f=g\cdot f+h\cdot f$ สำหรับทุก $x\in\mathbb{R}$ นั่นคือ $(R,+,\cdot)$ มีสมบัติการแจกแจง เพราะฉะนั้น $(R,+,\cdot)$ เป็นริง

สมบัติเบื้องต้นของริง

บทนิยาม 7.2 กำหนดให้ $(R,+,\cdot)$ เป็นริง จะเรียก $(R,+,\cdot)$ ว่าริงสลับที่ (commutative ring) ก็ต่อเมื่อ $a\cdot b=b\cdot a$ สำหรับทุก $a,b\in R$ และเรียก $(R,+,\cdot)$ ว่าริงที่มีสมาชิกเอกลักษณ์ (ring with identity or ring with unit element) ก็ต่อเมื่อ มี $1\in R$ ที่ทำให้ $1\cdot a=a\cdot 1=a$ สำหรับ ทุก $a\in R$

จากบทนิยาม 7.2 จะได้ว่า ถ้า $(R,+,\cdot)$ เป็นริงที่มีสมาชิกเอกลักษณ์ แล้ว R จะมีสมาชิก เอกลักษณ์สำหรับการคูณ ซึ่งเราจะเขียนแทนด้วยสัญลักษณ์ 1 ซึ่งเรียกว่าสมาชิกเอกลักษณ์สำหรับการคูณ (multiplicative identity element) หรือสมาชิกเอกลักษณ์ (unit element) ของ $(R,+,\cdot)$ พิจารณา $(\mathbb{Z},+,\cdot)$, $(\mathbb{Q},+,\cdot)$ และ $(\mathbb{R},+,\cdot)$ ต่างก็เป็นริงสลับที่ที่มีสมาชิกเอกลักษณ์เนื่องจากมี

1 ทำหน้าที่เป็นสมาชิกเอกลักษณ์ รวมถึง $(\mathbb{Z}_n,+_n,\cdot_n)$ เป็นริงสลับที่ที่มีสมาชิกเอกลักษณ์ เพราะว่า มี [1] ทำหน้าที่เป็นสมาชิกเอกลักษณ์ สมบัติของริง $(Z,+,\cdot)$ อันหนึ่ง คือ ถ้า $a\cdot b=0$ แล้ว a=0 หรือ b=0 สำหรับทุก $a,b\in\mathbb{Z}$ แต่สำหรับริง $(R,+_8,\cdot_8)$ เมื่อ $R=\{[0],[2],[4],[6]\}\subset\mathbb{Z}_8$ จะ ได้ว่า $[2]\cdot [4]=[0]$ โดยที่ $[2]\neq [0]$ และ $[4]\neq [0]$ ซึ่งในที่นี้ จะเรียก $[2],[4]\in R$ ว่าตัวหารของ ศูนย์ ดังบทนิยาม ต่อไปนี้

บทนิยาม 7.3 กำหนดให้ $(R,+,\cdot)$ เป็นริง และกำหนดให้ $a\in R$ โดยที่ a
eq 0 จะเรียก a ว่าตัว หารของศูนย์ (zero divisor or divisor of zero) ก็ต่อเมื่อ มี $b\in R$ โดยที่ b
eq 0 ที่ทำให้

$$a \cdot b = b \cdot a = 0$$

และเรียก $(R,+,\cdot)$ ว่าริงที่มีตัวหารของศูนย์ (zero with zero divisor) ก็ต่อเมื่อ ริง $(R,+,\cdot)$ มี สมาชิกที่เป็นตัวหารของศูนย์

พิจารณาริงสลับที่ $(\mathbb{Z}, +_n, \cdot_n)$ เมื่อ n ไม่เป็นจำนวนเฉพาะ จะได้ว่า $n = a \cdot b$ โดยที่ 1 < a < n และ 1 < b < n ดังนั้น

$$[0] = [n] = [a \cdot b] = [a] \cdot [b]$$

โดยที่ [a]
eq [0] และ [b]
eq [0] นั่นคือ [a] และ [b] เป็นตัวหารของศูนย์ของ \mathbb{Z}_n

พิจารณาริง
$$(M_2(\mathbb{Z}),+,\cdot)$$
 เมื่อ $M_2(\mathbb{Z})=\left\{ egin{array}{c|c} a&b\\c&d \end{array} \middle| a,b,c,d\in\mathbb{Z} \right\}$ จะเห็นว่า

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

ดังนั้น $egin{bmatrix} 1 & 0 \ 0 & 0 \end{bmatrix}$ และ $egin{bmatrix} 0 & 0 \ 0 & 1 \end{bmatrix}$ ต่างก็เป็นตัวหารของศูนย์ของ $M_2\left(\mathbb{Z}\right)$

บทนิยาม 7.4 กำหนดให้ $(R,+,\cdot)$ เป็นริงสลับที่และเป็นริงที่มีสมาชิกเอกลักษณ์ 1 จะเรียกริง $(R,+,\cdot)$ ว่าอินทิกรัลโดเมน (integral domain) ก็ต่อเมื่อ $(R,+,\cdot)$ ไม่มีตัวหารของศูนย์

ริง $(\mathbb{Z},+,\cdot)$, $(\mathbb{Q},+,\cdot)$ และ $(\mathbb{R},+,\cdot)$ ต่างก็เป็นอินทิกรัลโดเมน สำหรับริง $(\mathbb{Z}_6,+_6,\cdot_6)$ เป็นริงสลับที่ที่มีสมาชิกเอกลักษณ์ แต่ไม่เป็นอินทิกรัลโดเมน เพราะว่ามี $[2],[3]\in\mathbb{Z}_6$ ที่ทำให้ $[2]\cdot_n[3]=[0]$ นั่นคือ มี [2] และ [3] เป็นตัวหารของศูนย์

บทนิยาม 7.5 กำหนดให้ $(R,+,\cdot)$ เป็นริงสลับที่ที่มีสมาชิกเอกลักษณ์ 1 จะเรียกริง $(R,+,\cdot)$ ว่า ริงการหาร (divisiion ring) ก็ต่อเมื่อ $(R\setminus\{0\}\,,\cdot)$ เป็นกรุป

บทนิยาม 7.6 กำหนดให้ $(R,+,\cdot)$ เป็นริง และ $S\subseteq R$ จะเรียก S ว่าริงย่อย (subring) ก็ต่อเมื่อ $(S,+,\cdot)$ เป็นริง

สำหรับริง $(R,+,\cdot)$ ใด ๆ จะมี $(\{0\},+,\cdot)$ และ $(R,+,\cdot)$ เป็นริงย่อยเสมอ และเรียกริงย่อย ทั้งสองว่าริงย่อยทริเวียล หรือ ริงย่อยชัด (trivial subring) ของ $(R,+,\cdot)$ ก่อนที่จะกล่าวถึงสมบัติ ของริง จะให้ข้อตกลงว่า สำหรับริง $(R,+,\cdot)$ ใด ๆ ถ้า $a,b\in R$ แล้วสัญลักษณ์ -a แทนตัวผกผัน ภายใต้การบวกของ a และ a^{-1} แทนตัวผกผันภายใต้การคูณของ a (ในกรณีที่ a มีตัวผกผันภายใต้ การคูณ) ในบางครั้งเมื่อไม่จำเป็นต้องบ่งบอกการดำเนินการทวิภาคบนเซต R เราจะเขียนว่า R เป็น ริง แทน $(R,+,\cdot)$ เป็นริง ab แทน $a\cdot b$ และ a-b แทน a+(-b)

ทฤษฎีบท 7.7 กำหนดให้ R เป็นริง และ $a,b\in R$ จะได้ว่า

- 1. a0 = 0a = 0
- 2. a(-b) = (-a)b = -(ab)
- 3. (-a)(-b) = ab

การพิสูจน์ กำหนดให้ R เป็นริง และ $a,b\in R$

- (1) พิจารณา 0+a0=a0=a(0+0)=a0+a0 เนื่องจาก (R,+) เป็นกรุป ดังนั้น กฎการตัดออกจึงเป็นจริง จึงทำให้ a0=0 ในทำนองเดียวกัน จะได้ว่า 0a=0
- (2) เนื่องจาก ab+a(-b)=a(b+(-b))=a0=0 และ ab+(-a)b=(a+(-a))b=0b=0 ดังนั้น a(-b) และ (-a)b ต่างก็เป็นตัวผกผันภายใต้การบวกของ ab เพราะว่า (R,+) เป็นกรุป ดังนั้น -(ab) เป็นตัวผกผันภายใต้การบวกของ ab เช่นกัน ดังนั้น a(-b)=(-a)b=-(ab)
- (3) โดยข้อ (2) จะได้ว่า (-a)(-b) = -(a(-b)) = -(-(ab)) = ab

เนื่องจากริงทุกริงมีสมาชิกเอกลักษณ์ภายใต้การบวก (0) ดังนั้น สำหรับริงที่มีสมาชิกเพียง ตัวเดียว จะได้ว่าสมาชิกนั้นคือ 0 และ 0+0=0=(0)(0) ซึ่งเรียกริงเช่นนี้ว่าริงทริเวียลหรือริงชัด (trivial ring) นั่นคือ $R=\{0\}$ คือ ริงทริเวียล ในกรณีที่ R เป็นริงที่มีสมาชิกเอกลักษณ์ 1 และ R ไม่เป็นริงทริเวียล จะได้ว่า 0 และ 1 แตกต่างกัน ดังบทแทรกต่อไปนี้

บทแทรก 7.8 กำหนดให้ R เป็นริงที่มีสมาชิกเอกลักษณ์ 1 และ R ไม่เป็นริงทริเวียล จะได้ว่า $0 \neq 1$ เมื่อ 0 คือ สมาชิกเอกลักษณ์ภายใต้การบวกของ R

การพิสูจน์ กำหนดให้ R เป็นริงที่มีสมาชิกเอกลักษณ์ 1 และ R ไม่เป็นริงทริเวียล สมมติให้ 0=1 จะได้ว่า ถ้า $a\in R$ แล้ว a=1a=0a=0 ดังนั้น $R=\{0\}$ เป็นริงทริเวียล นั่นคือ $0\neq 1$

ในกรณีที่ R เป็นริงที่มีสมาชิกเอกลักษณ์ จะได้ว่า

ทฤษฎีบท 7.9 กำหนดให้ R เป็นริงที่มีสมาชิกเอกลักษณ์ 1 จะได้ว่า

1.
$$(-1)a = -a$$
 สำหรับทุก $a \in R$

2.
$$(-1)(-1) = 1$$

การพิสูจน์ กำหนดให้ R เป็นริงที่มีเอกลักษณ์ 1

(1) สมมติให้ $a \in R$ เนื่องจาก

$$a + (-1)a = 1a + (-1)a = (1 + (-1))a = 0a = 0$$

ดังนั้น (-1)a เป็นตัวผกผันภายใต้การบวกของ a แต่เนื่องจาก -a เป็นตัวผกผันภายใต้การบวกของ a จึงทำให้ (-1)a=-a

(2) จากข้อ (1) ถ้าให้ a=-1 จะได้ว่า (-1)(-1)=-(-1)=1

ทฤษฎีบท 7.10 กำหนดให้ R เป็นริง และ $S\subseteq R$ โดยที่ $S\neq\varnothing$ จะได้ว่า S เป็นริงย่อยของ R ก็ต่อเมื่อ

2. $ab \in S$ สำหรับทุก $a,b \in S$

การพิสูจน์ กำหนดให้ R เป็นริง และ $S\subseteq R$ โดยที่ $S\neq\varnothing$ ถ้า S เป็นริงย่อยของ R แล้วจะเห็นได้ชัดว่าสมบัติข้อ 1. และ 2. เป็นจริง ในทางกลับกัน สมมติให้สมบัติข้อ 1. และ 2. เป็นจริง กำหนดให้ $a,b\in S$ โดยข้อ 1. จะได้ว่า $a-a=0\in S$ และ $0-b=-b\in S$ อาศัยทฤษฎีบท 5.3 จึงได้ว่า (S,+) เป็นกรุปย่อยของ (R,+) เนื่องจาก $S\subseteq R$ ฉะนั้น $a,b\in R$ แต่เพราะว่า (R,+) เป็นอาบีเลียนกรุป จึงได้ว่า a+b=b+a ดังนั้น (S,+) เป็นอาบีเลียนกรุป เนื่องจาก $S\subseteq R$ และ R มีสมบัติการเปลี่ยนหมู่สำหรับการคูณ จึงทำให้ S มีสมบัติดังกล่าวด้วย โดยสมบัติข้อ 2. จะได้ (S,\cdot) เป็นกึ่งกรุป เนื่องจาก R มีคุณสมบัติการแจกแจง จึงได้ว่า S มีสมบัติการกระจายด้วย นั่นคือ S เป็นริงย่อยของ R

ตัวอย่างที่ 7.2 กำหนดให้ R เป็นริงใด ๆ และกำหนดเซต

$$Z(R) = \{r \in R \mid rx = xr$$
สำหรับทุก $x \in R\}$

จงแสดงว่า Z(R) เป็นริงย่อยของ R

วิธีทำ เนื่องจากมี $0\in R$ ที่ซึ่ง 0x=0=x0 สำหรับทุก $x\in R$ ดังนั้น $0\in Z(R)$ นั่นคือ $Z(R)\neq\varnothing$ สำหรับ $r,s\in Z(R)$ จะได้ว่า $r,s\in R$ เนื่องจาก R เป็นจริง จะได้ว่า $r-s,rs\in R$ และได้ว่า

$$(r-s)x=rx-sx=xr-xs=x(r-s)\quad\text{สำหรับทุก }x\in R$$
 และ $(rs)x=r(sx)=r(xs)=(rx)s=(xr)s=x(rs)$ สำหรับทุก $x\in R$ ดังนั้น $r-s,rs\in Z(R)$ โดยทฤษฎีบท 7.10 จึงสรุปได้ว่า $Z(R)$ เป็นริงย่อยของ R จะเรียกเซต $Z(R)$ ว่าศูนย์กลาง (center) ของ R

บทนิยาม 7.11 กำหนดให้ R เป็นริงใด ๆ จะเรียก $a\in R$ ว่าสมาชิกนิรพล (nilpotent element) ก็ต่อเมื่อ มีจำนวนเต็มบวก n ที่ทำให้

$$a^n = \underbrace{aaa \cdots a}_{\text{p}} = 0$$

ถ้า a เป็นสมาชิกนิรพล โดยที่ k เป็นจำนวนเต็มบวกที่น้อยที่สุดซึ่ง $a^k=0$ แล้วจะเรียก a ว่า สมาชิกนิรพลขนาด k และเขียนแทนเซตของสมาชิกนิรพลทั้งหมดของ R ด้วยสัญลักษณ์ N(R)

ในริง $(\mathbb{Z}_4,+_4,\cdot_4)$ จะได้ว่า $[0],[2]\in\mathbb{Z}_4$ เป็นสมาชิกนิรพล ทั้งนี้เพราะว่า $[0]^1=[0]$ และ $[2]^2=[0]$ นั่นคือ $N(R)=\{[0],[2]\}$ เนื่องจาก $0^1=0$ ดังนั้น 0 เป็นสมาชิกนิรพลขนาด 1 นั่น คือ $0\in N(R)$ และจะได้ว่า $N(R)\neq\phi$

ทฤษฎีบท 7.12 ถ้า R เป็นริงสลับที่ แล้ว N(R) เป็นริงย่อยของ R

การพิสูจน์

กำหนดให้ R เป็นริงสลับที่ จะเห็นว่า $0\in N(R)$ ดังนั้น $N(R)\neq \phi$ ให้ $a,b\in N(R)$ โดยที่ a และ b เป็นสมาชิกนิรพลขนาด k และ m ตามลำดับ เนื่องจาก ab=ba และ $a^k=b^m=0$ เพราะฉะนั้น

$$(a-b)^{k+m} = \binom{k+m}{0} a^{k+m} + \binom{k+m}{1} a^{k+m-1} (-b)^1 + \cdots$$

$$+ \binom{k+m}{m} a^k (-b)^m + \binom{k+m}{m+1} a^{k-1} (-b)^{m+1}$$

$$+ \cdots + (-b)^{k+m}$$

$$= 0$$

และ

$$(ab)^{km} = \underbrace{(ab)(ab)\cdots(ab)}_{\substack{\mathsf{nk} \ \mathsf{\tilde{m}}\mathsf{\tilde{n}}}}$$

$$= \underbrace{aa\cdots a}_{\substack{\mathsf{nk} \ \mathsf{\tilde{m}}\mathsf{\tilde{n}}}} \underbrace{bb\cdots b}_{\substack{\mathsf{nk} \ \mathsf{\tilde{m}}\mathsf{\tilde{n}}}}$$

$$= a^{km}b^{km}$$

$$= (a^k)^m(b^m)^k$$

$$= (0)^m(0)^k = 0$$

นั่นคือ $a-b,ab\in N(R)$ โดยทฤษฎีบท 7.10 จึงสรุปได้ว่า N(R) เป็นริงย่อยของ R

บทนิยาม 7.13 กำหนดให้ R เป็นริงใด ๆ จะเรียกจำนวนเต็มบวก n ว่าแคแรกเทอริสติก (characteristic) ของ R ก็ต่อเมื่อ n เป็นจำนวนเต็มบวกที่น้อยที่สุดที่ทำให้

$$na = \underbrace{a + a \cdots + a}_{n \in \mathbb{N}} = 0$$
 สำหรับทุก $a \in R$

ถ้า k เป็นจำนวนเต็มบวกที่น้อยที่สุดซึ่ง ka=0 แล้วจะเรียก a ว่าสมาชิกนิรพลขนาด k และเขียน แทนเซตของสมาชิกนิรพลทั้งหมดของ R ด้วยสัญลักษณ์ N(R)

การพิสูจน์ กำหนดให้ R เป็นอินทิกรัลโดเมนจำกัดที่มีสมาชิก q ตัว และ $a \in R$ จะได้ว่า

$$qa=\underbrace{a+a\cdots+a}_{q\ ilde{ ext{min}}}=0$$
 สำหรับทุก $a\in R$

สมมติให้ $M=\{m\in\mathbb{N}|ma=0$ สำหรับ $a\in R\}$ จะเห็นว่า $q\in M\subseteq\mathbb{N}$ ดังนั้น $M\neq\varnothing$ จึงทำให้ได้ว่า M มีสมาชิกตัวที่น้อยที่สุด สมมติว่าคือ m เพราะฉะนั้น m เป็นจำนวนเต็มบวกที่น้อยที่สุดที่ทำให้ ma=0 สำหรับทุก $a\in R$ นั่นคือ R มีแคแรกเทอริสติก m

พิจารณา \mathbb{Z}_p เมื่อ p เป็นจำนวนเฉพาะ จะได้ว่า \mathbb{Z}_p เป็นอินทิกรัลโดเมนที่ มีแคแรกเทอริสติก p ทั้งนี้เพราะว่า สำหรับทุก $[a] \in \mathbb{Z}_p$

นอกจากนี้ $(\mathbb{Z},+,\cdot)$, $(\mathbb{Q},+,\cdot)$, $(\mathbb{R},+,\cdot)$ และ $(\mathbb{C},+,\cdot)$ เป็นอินทิกรัลโดเมนที่มีแคแรค เทอริสติกเป็นศูนย์ เพราะว่าสำหรับสมาชิก a ใด ๆ โดยที่ $a\neq 0$ และ $n\in\mathbb{Z}$ จะได้ว่า ถ้า na=0 แล้ว n=0

ทฤษฎีบท 7.14 กำหนดให้ R เป็นริงที่มีสมาชิกเอกลักษณ์ 1 จะได้ว่า R มีแคแรกเทอริสติก n ก็ต่อเมื่อ n เป็นจำนวนเต็มบวกที่น้อยที่สุดที่ทำให้ n1=0

การพิสูจน์ (\Rightarrow) กำหนดให้ R เป็นริงที่มีสมาชิกเอกลักษณ์ 1 ถ้า R มีแคแรกเทอริสติก n จะได้ว่า n เป็นจำนวนเต็มบวกที่น้อยที่สุดที่ทำให้ na=0 สำหรับทุก $a\in R$ และเนื่องจาก $1\in R$ ดังนั้น n จึงเป็นจำนวนเต็มบวกที่น้อยที่สุดที่ทำให้ n1=0

$$(\Leftarrow)$$
 ให้ n เป็นจำนวนเต็มบวกที่น้อยที่สุดที่ทำให้ $n1=0$ สมมติให้ $a\in R$ จะได้ว่า $na=\underbrace{a+a+\cdots+a}_{\text{n mo}}$
$$=a\underbrace{(1+1+\cdots+1)}_{\text{n mo}}$$

$$=a(n1)$$

$$= a0$$

$$= 0$$

นั่นคือ n เป็นแคแรกเทอริสติกของ R

ทฤษฎีบท 7.15 ถ้า D เป็นอินทิกรัลโดเมน แล้ว $\operatorname{Char}(D)=0$ หรือ $\operatorname{Char}(D)=p$ อย่างใดอย่าง หนึ่ง เมื่อ p เป็นจำนวนเฉพาะ

การพิสูจน์ กำหนดให้ D เป็นอินทิกรัลโดเมน และสมมติให้ $\operatorname{Char}(D) \neq 0$ ดังนั้น จะมี p เป็นจำนวนเต็มบวกที่น้อยที่สุดที่ pa=0 สำหรับทุก $a\in D$ ต่อไปสมมติให้ n เป็นจำนวนเต็มบวกที่ n|pดังนั้น n < p และ p = nk สำหรับบาง $k \in \mathbb{N}$ โดยที่ 1 < k < pพิจารณา 0=pa=(nk)a=n(ka) สำหรับทุก $a\in D$ ถ้า ka=0 สำหรับทุก $a\in D$ จะได้ว่า k > p ทำให้ k = pนั่นคือ n=1แต่ถ้า $ka \neq 0$ สำหรับบาง $a \in D$ และสมมติให้ $b \in D$ เนื่องจาก (nk)a=0ดังนั้น ((nk)a)b = (nd)(ka) = 0เนื่องจาก $ka \neq 0$ จึงได้ว่า nb = 0ดังนั้น nb=0 สำหรับทุก $b\in D$ เพราะฉะนั้น $n \geq p$ เป็นผลให้ n = pจึงสรุปได้ว่า p เป็นจำนวนเฉพาะ

ในกรณีที่ D เป็นอินทิกรัลโดเมนจำกัด โดยทฤษฎีบท 7.15 จะได้บทแทรกดังต่อไปนี้

บทแทรก 7.16 ถ้า D เป็นอินทิกรัลโดเมนจำกัด แล้ว $\mathsf{Char}(D) = p$ เมื่อ p เป็นจำนวนเฉพาะ

การพิสูจน์ กำหนดให้ D เป็นอินทิกรัลโดเมนจำกัด เนื่องจาก (D,+) เป็นกรุปจำกัด ดังนั้น ให้ |D|=d จะได้ว่า

$$da = \underbrace{a + a + \cdots a +}_{\text{d fij}} = 0$$
 สำหรับทุก $a \in D$

นั่นคือ มีจำนวนเต็มบวก d ที่ทำให้ da=0 สำหรับทุก $a\in D$ เพราะฉะนั้น $\mathrm{Char}(D)\neq 0$ โดยทฤษฎีบท 7.15 จึงได้ว่า $\mathrm{Char}(D)=p$ เป็นจำนวนเฉพาะ

สรุปท้ายบท