

ชุดฝึกทักษะระบบควบคุมโดยใช้ โปรแกรมเมเบิลลอจิกคอนโทรลเลอร์

ปริญญานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรวิทยาศาสตรบัณฑิต สาขาวิชาเทคโนโลยีวิศวกรรมไฟฟ้า คณะเทคโนโลยีอุตสาหกรรม มหาวิทยาลัยราชภัฏบุรีรัมย์ พ.ศ. 2557

ใบรับรองปริญญานิพนธ์

สาขาวิชาเทคโนโลยีวิศวกรรมไฟฟ้า คณะเทคโนโลยีอุตสาหกรรม มหาวิทยาลัยราชภัฏบุรีรัมย์

สาขาเทคโนโลยีวิศวกรรมไฟฟ้า คณะเทคโนโลยีอุตสาหกรรม มหาวิทยาลัยราชภัฏบุรีรัมย์ รับรองแล้ว

> (ผู้ช่วยศาสตราจารย์จารินี ม้าแก้ว) หัวหน้าสาขาเทคโนโลยีวิศวกรรมไฟฟ้า วันที่.......เดือน.....พ.ศ.

หัวข้อปริญญานิพนธ์	:	ชุดฝึกทักษะระบบควบคุมโดยใช้
		โปรแกรมเมเบิลลอจิกคอนโทรเลอร์
โดย	:	นายปัญญา สวัสดิ์พูน
		นายคุณวุฒิ ศรีมุงคุณ
		นายจักรพันธ์ นามประกอบ
ที่ปรึกษาปริญญานิพนธ์	:	อาจารย์ดุสิต อุทิศสุนทร
		อาจารย์ธนกร ดุจเพ็ญ
สาขาวิชาและคณะ	:	สาขาเทคโนโลยีวิศวกรรมไฟฟ้า คณะเทคโนโลยีอุตสาหกรรม
ปีการศึกษา	:	2557

ปริญญานิพนธ์นี้มีวัตถุประสงค์เพื่อ 1) สร้างชุดฝึกทักษะระบบควบคุมโดยใช้ PLC เพื่อ ควบคุมสัญญาณไฟจราจรและมอเตอร์ 2) ทดสอบการทำงานของชุดฝึกทักษะระบบควบคุมโดยใช้ PLC เพื่อควบคุมสัญญ<mark>าณไฟจร</mark>าจรและมอเตอร์ <mark>มีการออกแบ<mark>บโดยกา</mark>รติดตั้งอุปกรณ์เสริมให้มีความ</mark> ปลอดภัย ทนทาน และสะดวกในการผึกปฏิบัติ การหาคุณภาพของชุดฝึกทักษะระบบควบคุมโดยใช้ โดยการทดสอบสมรรถนะในการสตาร์ทมอเตอร์ไฟฟ้าสามเฟสโดยตรง การกลับทางหมุน PLC มอเตอร์ไฟฟ้าสามเฟสโดยตรง การกลับทางหมุ่นหลังจากหยุดมอเตอร์ไฟฟ้าสามเฟส การกลับทาง หมุนมอเตอร์ไฟฟ้าสามเฟสแบบจ๊อกกิ้ง การสตาร์ทมอเตอร์ไฟฟ้าสามเฟสแบบสตาร์-เดลต้า การเดิน มอเตอร์เรียงตามลำดับ การเดินมอเตอร์เรียงตามลำดับอัตโนมัติ วงจรเริ่มมอเตอร์เรียงตามลำดับ อัตโนมัติโดยใช้ PLC การแสดงผลสัญญาณไฟจราจรแบบกระพริบ วงจรแสดงผลสัญญาณไฟจราจร แบบการปล่อยครั้งละสองแยกตรงข้ามกันและวงจรแสดงผลสัญญาณไฟจราจรแบบปล่อยทีละแยก ชุดฝึกทักษะระบบควบคุมโดยใช้ PLC มีความเหมาะสมในเรื่องขนาด น้ำหนัก การเลือกใช้วัสดุ การ ้ติดตั้ง การจัดวางและการออกแบบ มีความชัดเจนของสัญลักษณ์และตัวอักษร มีความปลอดภัยใน การใช้งาน มีความทนทาน สะดวกในการต่อวงจร การโปรแกรมข้อมูล การเคลื่อนย้ายจัดเก็บและ สามารถนำไปประยุกต์ใช้งานกับการทดลองปฏิบัติการอื่นๆได้อีกด้วย

บทคัดย่อ

Project Title	:	The Control System Training Set By Using PLC
Ву	:	Mr. Panya Sawadpoon
		Mr. Khunnawut SriMungkun
		Mr. Jakkapan Namprakhob
Project Advisors	:	Mr. Dusit Utitsoontorn
		Mr. Thanakorn Dujpen
Major Field and Department	:	Electrical Engineering Technology, Faculty of
		Industrial Technology
Academic year	:	2014

Abstract

This project aims to (1) create the control system training set by using PLC to control traffic lights and motors 2 test the operation of the control system training set by using PLC to control traffic lights and motors. The design was created by installation of equipment that is safe, durable and easy to practice, determining the quality of training set by the PLC control system by testing the performance of starting three - phase motor directly, reversing a three-phase electric motor directly, reversing a three-phase electric motor directly, reversing a three-phase jogging electric motor, the three phase electric motor starter of a Delta, running sequential motor, running sequence motor automatically, and the traffic signal control types. The control system training set by using PLC is appropriate in size, weight, material selection, installation, layout, design, clarity of symbols and letters. It is safe to use and durable, convenient to the circuit, easy to program, move, store, and can be applied with other experiments as well.

กิตติกรรมประกาศ

ปริญญานิพนธ์นี้สำเร็จลุล่วงด้วยดีคณะทำงานขอขอบคุณ อาจารย์วีระ เนตราทิพย์ คณบดี คณะเทคโนโลยีอุตสาหกรรม ผู้ช่วยศาสตราจารย์จารินี ม้าแก้ว หัวหน้าสาขาเทคโนโลยี วิศวกรรมไฟฟ้า อาจารย์ดุสิต อุทิศสุนทร อาจารย์ที่ปรึกษาหลัก อาจารย์ธนกร ดุจเพ็ญ อาจารย์ที่ ปรึกษาร่วม ผู้ช่วยศาสตราจารย์ณฐปกรณ์ จันทปิดตา อาจารย์ภูริช งามคง อาจารย์อำนาจ ราช ประโคน อาจารย์สุวัฒน์ มณีวรรณ อาจารย์ณัฐพล ภูครองทอง ดร.สุรชัย ปิยานุกูล อาจารย์ชัยรัตน์ วงศ์ฮาดจันทร์และอาจารย์อำพร สุทาโคตร ที่ให้คำปรึกษาในการดำเนินงานต่างๆ

ขอขอบคุณ คุณนที กิตติธรรมโสภณ ร้านเต็มที่ดีไซน์ อำเภอกระสัง และคุณอิทธินพ เอ็ม ประโคน ร้านดาต้าคอปปี้แอนปริ้นท์เมืองบุรีรัมย์ ที่ช่วยให้การดำเนินการสร้างชิ้นงานลุล่วงไปได้ด้วยดี สุดท้ายขอขอบคุณครอบครัวที่ให้กำลังใจจนท่ำให้ปริญญานิพนธ์นี้สำเร็จลุล่วงตามวัตถุประสงค์ทุก ประการ

	หน้า
บทคัดย่อภาษาไทย	(1)
บทคัดย่อภาษาอังกฤษ	(2)
กิตติกรรมประกาศ	(3)
สารบัญ	(4)
สารบัญตาราง	(6)
สารบัญภาพ	(10)
บทน้ำ 1 บทน้ำ 1. ความสำคัญและที่มาของปัญหา	1
1. ความสำคัญและที่มาของปัญหา	1
 วัตถุประสงค์ของการวิจัย 	2
3. ขอบเขตการศึกษา	2
4. ประโยชน์ที่คาดว่าจะได้รับ	2
5. คำสำคัญ	3
บทที่ 2 เอกสารและงานวิจัยที่เกี่ยวข้อง ABHAT บทบัน 1. แบบฝึกทักษะ 2. โปรแกรมเมเบิลลอจิกคอนโทรลเลอร์ 3. การควบคุม 4. สัญญาณไฟจราจร 5. มอเตอร์ไฟฟ้ากระแสสลับ 6. งานวิจัยที่เกี่ยวข้อง	4 6 28 30 32 38
บทที่ 3 วิธีการดำเนินงาน	40
1. ขั้นตอนการดำเนินงาน	40
 เครื่องมือและวัสดุอุปกรณ์ที่ใช้ในการดำเนินงาน 	42
 การออกแบบและสร้างแผงทดลอง 	44

สารบัญ

สารบัญ(ต่อ)

	หน้า
 การทดสอบการทำงานของชุดแบบฝึกทักษะระบบควบคุมโดยใช้ PLC 	68
บทที่ 4 ผลการดำเนินงาน	83
 ผลการทดลองวงจรควบคุมสัญญาณไฟจราจรและมอเตอร์ 	83
 ผลการประเมินเครื่องมือวิจัยจากผู้เชี่ยวชาญ 	145
บทที่ 5 สรุปผล อภิปรายผล และข้อเ <mark>สนอแนะ</mark>	146
 สรุปผลการดำเนินงาน RIAL TECK อภิปรายผลการทดลอง 	146
2. อภิปรายผลการทดลอง	149
3. ข้อเสนอแนะ	150
บรรณานุกรม	151
ภาคผนวก	
ภาคผนวก ก. ประวัติคณะทำงานABHAT	154
ภาคผนวก ข. คู่มือการใช้งาน	158
<i>คณะเทคโนโลยีอุ</i> ตสาหกรรม	

สารบัญตาราง

ø	าวราง	d N	หน้า
	2.1	ตารางเปรียบเทียบความแตกต่างระหว่างการใช้งาน PLC และระบบรีเลย์	9
		ในการควบคุม	
	2.2	แสดงคุณสมบัติและประโยชน์ของPLC	22
	3.1	เครื่องมือในการดำเนินงาน	42
	3.2	วัสดุในการดำเนินงาน	43
	3.3	การต่อสายเอาท์พุตไปยังชุดแสดงผลสัญญาณไฟจราจรแบบกระพริบ	76
	3.4	การต่อสายเอาท์พุตไปยังชุดแส <mark>ดงผล</mark> สัญญ <mark>าณไฟ</mark> จราจรแบบการปล่อย	78
		ครั้งละสองแยกตรงข้ามกัน RIAL TEOM	
	3.5	การต่อสายเอาท์พุตไปยังชุดแสดงผลสัญญาณไฟจราจรแบบปล่อยทีละแยก	80
	4.1	ตำแหน่งของอินพุตและเอาท์พุตวงจรสตาร์ทมอเตอร์ไ <mark>ฟฟ้าสามเ</mark> ฟสโดยตรง	83
		การเขียน Mnem <mark>onic</mark> Code วงจรสตาร์ทมอเตอร์ไฟ <mark>ฟ้า 3</mark> เฟสโดยตรง	84
	4.3	ตำแหน่งของอินพ <mark>ุตและเ</mark> อาท์พุตวงจรกลับทางหมุนมอเตอร์ไฟฟ้า	87
		สามเฟสแบบ Direct Reversing	
	4.4	การเขียน Mnemonic Code วงจรกลับทางหมุนมอเตอร์ไฟฟ้าสามเฟสแบบ	89
		Direct Reversing	
	4.5	ตำแหน่งขอ <mark>งอินพุตและเอาท์พุต วง</mark> จรกลับ <mark>ทาง</mark> หมุนมอเตอร์ไฟฟ้าสามเฟสแบบ	92
		Reversing After Stop ทุคโนโลยีอุตสาหกรรม	
	4.6	การเขียน Mnemonic Code วงจรกลับทางหมุนมอเตอร์ไฟฟ้าสามเฟสแบบ	94
		Reversing After Stop	
	4.7	ตำแหน่งของอินพุตและเอาท์พุต วงจรกลับทางหมุนมอเตอร์ไฟฟ้าสามเฟสแบบ	97
		Jogging	
	4.8	การเขียน Mnemonic Code วงจรกลับทางหมุนมอเตอร์ไฟฟ้าสามเฟสแบบ	98
		Jogging	
	4.9	ตำแหน่งของอินพุตและเอาท์พุต วงจรสตาร์ทมอเตอร์ไฟฟ้า3 เฟส	101
		แบบสตาร์-เดลต้า	

สารบัญตาราง(ต่อ)

Ģ	ตารางที่		หน้า
	4.10	การเขียน Mnemonic Code วงจรสตาร์ทมอเตอร์ไฟฟ้า3 เฟส	103
		แบบสตาร์-เดลต้า	
	4.11	ตำแหน่งของอินพุตและเอาท์พุต วงจรเริ่มเดินมอเตอร์เรียงตามลำดับ	106
	4.12	การเขียน Mnemonic Code วงจรเริ่มเดินมอเตอร์เรียงตามลำดับ	108
	4.13	ตำแหน่งของอินพุตและเอาท์พุต วงจรเริ่มเดินมอเตอร์เรียงตามลำดับอัตโนมัติ	111
	4.14	การเขียน Mnemonic Code วงจรเริ่มเดินมอเตอร์เรียงตามลำดับอัตโนมัติ	112
	4.15	ตำแหน่งของอินพุตและเอาท์ <mark>พุต วงจรกลับทา</mark> งหมุนมอเตอร์ไฟฟ้าสามเฟสแบบ	116
		Jogging	
	4.16	การเขียน Mnemonic Code วงจรกลับทางหมุนมอเตอร์ไฟฟ้าสามเฟสแบบ	118
		Jogging	
	4.17	ตำแหน่งของอิน <mark>พุตแล</mark> ะเอาท์พุตวงจรแสดงผลสัญญา <mark>ณไฟจ</mark> ราจร	122
		แบบกระพริบ 🖉	
		การเขียน Mnemonic Code วงจรแสดงผลสัญญาณไฟจราจรแบบกระพริบ	124
	4.19	ตำแหน่งของอินพุตและเอาท์พุตวงจรแสดงผลสัญญาณไฟจราจรแบบการ	128
		ครั้งละสองแยกตรงข้ามกัน ^{เส} ็งABHAT	
	4.20	การเขียน Mnemonic Code วงจรแสดงผลสัญญาณไฟจราจรแบบการ	129
		ปล่อยครั้งละสองแยกตรงข้ามกัน อยี่อตสาทก ^{รรม}	
	4.21	ตำแหน่งของอินพุตและเอาท์พุตวงจรแสดงผลสัญญาณไฟจราจรแบบ	135
		ปล่อยที่ละแยก	
	4.22	การเขียน Mnemonic Code วงจรแสดงผลสัญญาณไฟจราจรแบบ	139
		ปล่อยที่ละแยก	
		ผลการวิจัยจากผู้เชี่ยวชาญทางด้าน PLC	145
		ำสั่ง LOAD, LOAD NOT	174
		าารเขียนคำสั่ง LD และ LD NOT	174
		ำสั่ง AND, AND NOT	174
	ข.4 ก	การเขียนคำสั่ง AND, AND NOT	175

สารบัญตาราง(ต่อ)

ตารางที่		หน้า
ข.5 ค	กำสั่ง OR, OR NOT	175
ข.6 ก	าารเขียนสั่ง OR, OR NOT	175
ข.7 ศ	กำสั่ง OUT, OUT NOT	176
ข.8 ก	การเขียนสั่ง OUT, OUT NOT	176
ข.9 ศ	กำสั่ง OUTPUT NOT	176
ข.10	การเขียนคำสั่ง OUT NOT	177
ข.11	คำสั่ง END	177
	ชุดคำสั่งในรูปเชื่อมแบบอนุกรมจะใช้คำสั่ง AND LD	178
ข.13	ชุดคำสั่งในรูปการเชื่อมแบบขนานจะใช้คำสั่ง OR LD	178
ข.14	การเขียนโปรแกรมโดยใช้คำสั่ง AND LD และ OR LD	179
ข.15	การเชื่อมโปรแ <mark>กรม 2</mark> Block ในแบบขนาน	179
ข.16	แลดเดอร์ไดอะแ <mark>กรม (Ladder Dia</mark> gram) A	182
ข.17	แลดเดอร์ไดอ ะแกรม (Ladder Diagram) B	182
ข.18	แลดเดอร์ไดอะแกรม (Ladder Diagram) ที่ผิด	183
ข.19	แลดเดอร์ไดอะแกรม (Ladder Diagram) ที่ถูก	183
ข.20	การใช้คำสั่ง IL	186
ข.21	การเขียนแล้ดเดอร์ไดอะแกรมด้วย TR การใช้คำสั่ง JMP	188
ข.22	การใช้คำสั่ง JMP	189
ข.23	การใช้คำสั่งเซต (SET) และรีเซต (RESET)	190
ข.24	การเขียนแลดเดอร์โดยใช้คำสั่ง SET และ RESET	190
ข.25	การใช้คำสั่ง KEEP – KEEP (11)	191
ข.26	การเขียนแลดเดอร์โดยใช้คำสั่ง KEEP	191
	การใช้คำสั่ง DIFFERENTIATE UP และ DOWN-DEFU , DIFD	192
ข.28	การเขียนแลดเดอร์โดยใช้คำสั่ง DIFFERENTIATE UPและDOWN-DEFU,DIFD	192
ข.29	การใช้คำสั่ง TIMER:TIM	193
ข.30	การใช้งานของคำสั่ง Timer	194

สารบัญตาราง(ต่อ)

ตารางที่		หน้า
ข.31	การใช้คำสั่ง COUNTER – CNT	195
ข.32	การใช้งานของคำสั่ง Counter	197
ข.33	การประยุกต์ใช้งานของ TIMER และ COUNTER	198
ข.34	การประยุกต์ใช้งานของ TIMER และ COUNTER	199
ข.35	การเขียนแลดเดอร์ไดอะแกรมของปั๊มน้ำ	201
ข.36	การใช้คำสั่ง Reversible Counter CNTR	202
ข.37	การใช้งาน Counter ชนิด UP/DOWN Counter หรือ Reversible Counter	203
ข.38	กลุ่มคำสั่ง Data Movement AL TEC/10	204
ข.39	การเขยนกลุมคาสง Data Movement	205
ข.40	กลุ่มคำสั่ง Data Shifting	207
ข.41	คำสั่ง SFT	208
ข.42	การกำหนดหมายเฉขกำกับหน้าอินพุต – เอาท์พุต 🥿 🦳	210
ข.43	การกำหนด Mnemonic Code จาก Ladder Diagram	211
ข.44	สัญลักษณ์ไฟฟ้าที่ใช้สำหรับการควบคุมไฟฟ้ามาตรฐาน DIN, IEC, ANSI	213
ข.45	สัญลักษณ์ไฟฟ้าที่ใช้สำหรับการควบคุมไฟฟ้ามาตรฐาน SI	216
	<i>คณะเทคโนโลยีอุ</i> ตสาหกรรม	

สารบัญภาพ

ภาพที่		หน้า
2.1	โดอะแกรมแสดงการประยุกต์ใช้งานของระบบ PLC	7
2.2 ՝	โดอะแกรมแสดงการทำงานของ PLC	11
2.3 ՝	โดอะแกรมแสดงการทำงานของระบบ CPU	12
2.4	แสดงขั้นตอนการทำงานของหน่วยประมวลผลกลาง	13
2.5	แสดงอินพุตและเอาท์พุตอินเตอร์เฟส (I/O interface)	13
2.6	แสดงการใช้คอมพิวเตอร์เป็นอุปกรณ์เขียนโปรแกรม	14
2.7	แสดงการใช้อุปกรณ์เขียนโปรแ <mark>กรมขนาดเล็กเป</mark> ็นอุปกรณ์เขียนโปรแกรม	14
2.8	แผงควบคุมจะลดความยุ่งยากลงได้มากเมื่อระบบที่ใช้ PLC	16
2.9	การใช้คอมพิวเตอร์ส่วนบุคคลใช้เป็นตัวกลางเชื่อมต่อกับระบบคอมพิวเตอร์หลัก	n 18
2.10	แสดงการแบ่ง PLC ออกเป็นกลุ่มต่างๆตามจำนวนของอินพุตและเอาท์พุต	19
2.11	แสดง PLC กลุ่ม <mark>ต่างๆ</mark> ตามจำนวนของอินพุตและเอาท์พุต	20
2.12	แสดงวงจรแลดเดอร์ทางไฟฟ้าอย่างง่าย	20
2.13	การนำ PLC มาประยุกต์ใช้ในวงจรภาพที่ 2.12	21
2.14	แสดงอุปกรณ์อินพุ <mark>ตและเอาท์</mark> พุตไม่ได้ต่อถึงกั <mark>นโดยตรงแต่ต้องต่อผ่าน</mark> PLC	24
2.15	การเปลี่ยนแปลงแบบการเดินสายไฟฟ้าใหม่กับเปลี่ยนที่โปรแกรมใน PLC	25
2.16	ระบบที่ใช้ PLC จะใช้พื้นที่ในการติดตั้งอย่างมีประสิทธิภาพ	26
2.17	แสดงการติดตั้งสถานีอินพูตและเอาท์พูตทางไกล(Remote I/O)	26
2.18	(a) แสดงหน่วยประมวลผลกลางของPLC และ (b) แสดงโมดูลอัจฉริยะ	27
	(Intelligent Module) ที่แสดงสถานะของPLC	
2.19	แสดงร้อยละของอุปกรณ์ต่างๆที่เกิดการเสียหายเมื่อใช้ระบบ PLC	27
2.20	แสดงอุปกรณ์ที่เขียนโปรแกรมสามารถที่จะตรวจสอบสถานะของอุปกรณ์	28
	อินพุตและเอาท์พุตได้ รวมถึงตรวจสอบความถูกต้องของวงจรที่ออกแบบได้	
2.21	ระบบควบคุมแบบวงเปิด	29
2.22	ระบบควบคุมแบบวงปิด	30
2.23	มอเตอร์ไฟฟ้ากระแสสลับ	33
2.24	มอเตอร์เหนี่ยวนำชนิดกรงกระรอกและโรเตอรแบบพันขดลวด	34
2.25	มอเตอร์ชนิดกรงกระรอก	34

ภาพที่	หน้า
2.26 โรเตอร์ชนิดขดลวดพัน	35
2.27 โครงมอเตอร์	35
2.28 แสดงส่วนของแกนเหล็กสเตเตอร์	36
2.29 ชุดฝึกทักษะการเรียนรู้การควบคุมสัญญาณไฟจราจรของอนุชน ลิ้มภักดี	38
2.30 ชุดทดลองปฏิบัติการควบคุมมอเตอร์ด้วยพีแอลซีของสุเมธ สงวนใจ	39
3.1 แผนภาพแสดงขั้นตอนการดำเนินงานของปริญญานิพนธ์	41
3.2 แสดงแนวคิดในการออกแบบ	44
3.3 แสดงวงจรการสตาร์ทมอเตอร์ไฟฟ้า 3 เพลโดยตรง	45
3.4 วงจรกลับทางหมุนมอเตอร์ไฟฟ้า 3 เฟส แบบ Direct Reversing	46
3.5 วงจรกลับทางหมุนมอเตอร์ไฟฟ้า 3 เฟส แบบ Reversing After Stop	47
3.6 วงจรกลับทางหม <mark>ุนมอเต</mark> อร์ไฟฟ้า 3 เฟส แบบ Jogging	48
3.7 วงจรสตาร์ทมอเตอร์ 3 เฟส แบบสตาร์ - เดลต้า	49
3.8 วงจรเริ่มเดินมอเตอร์เรียงตามลำดับ	50
3.9 วงจรเริ่มมอเตอร์เรียงตามลำดับอัตโนมัติ	51
3.10 วงจรเริ่มมอเตอร์เรียงตามลำดับอัตโนมัติโดยใช้ PLC	52
3.11 ระบบไฟจราจร	53
3.11 ระบบไฟจราจรแบบการปล่อยครั้งละสองแยกตรงข้ามกัน 552	53
3.13 ระบบไฟจราจรแบบปล่อยที่ละแยก	54
3.14 ภาพด้านหน้าแสดงการออกแบบในส่วนของแผงทดลองสัญญาณไฟจราจร	55
3.15 ขนาดของแผงวงจรสัญญาณไฟจราจร	55
3.16 การออกแบบแผง PLC	56
3.17 ขนาดของแผง PLC	56
3.18 การออกแบบวงจรแผงควบคุมมอเตอร์	57
3.19 การออกแบบในส่วนของแผงควบคุมมอเตอร์	58
3.20 การเจาะรูเพื่อวางอุปกรณ์โดยเครื่องเจาะเลเซอร์	59
3.21 การพิมพ์ลายวงจรลงบนสติ๊กเกอร์ใส	59

ภาพที่		หน้า
3.22	การติดสติ๊กเกอร์ใสลงบนชิ้นงาน	60
3.23	การติดสติ๊กเกอร์ทึบแสงลงบนชิ้นงาน	60
3.24	ภาพชิ้นงานที่ได้จากการออกแบบ	60
3.25	การตัดแผ่นอะครีลิคเพื่อสร้างชิ้นงาน	61
3.26	แผ่นอะครีลิคที่ตัดไว้ประกอบเป็นชิ้นงาน	61
3.27	การประกอบเสาสัญญาณไฟจราจร	62
3.28	ขั้นตอนการติดตั้งอุปกรณ์ลง <mark>บนชิ้นงาน</mark>	62
3.29	แผงทดลองสัญญาณไฟจราจรที่ประกอบเสร็จแล้ว	63
3.30	ขั้นตอนการติดอุปกรณ์ลงแผงวงจร PLC	63
3.31	แผง PLC ที่ประกอบเสร็จแล้ว	64
3.32	การตัดเหล็กเพื่อ <mark>สร้างขาตั้งแผงมดลองมอเตอร์</mark>	64
3.33	การเชื่อมเหล็กเพื่อสีร้างขาตั้งแผงทดลองมอเตอร์	65
3.34	การพ่นสีขาตั้งแผงทดสองมอเตอร์	65
3.35	การยึดแผงทดลองมอเตอร์เข้ากับขาตั้ง	66
3.36	การต่อสายอุปกรณ์	66
3.37	การต่อสายอุปกรณ์	67
3.38	แผงทดลองมอใตอร์ที่ประกอโบเสร็จแล้ปีอุตสาหกรรรม	67
3.39	แสดงการต่อแสดงวงจรการสตาร์ทมอเตอร์ไฟฟ้า 3 เฟสโดยตรง	68
3.40	แสดงการต่อวงจรกลับทางหมุนมอเตอร์ไฟฟ้า 3 เฟส แบบ Direct Reversing	69
3.41	แสดงการต่อวงจรกลับทางหมุนมอเตอร์ไฟฟ้า 3 เฟส แบบ	70
	Reversing After Stop	
3.42	แสดงการต่อวงจรกลับทางหมุนมอเตอร์ไฟฟ้า 3 เฟส แบบ Jogging	71
3.43	แสดงการต่อวงจรสตาร์ทมอเตอร์ 3 เฟส แบบสตาร์ – เดลต้า	72
3.44	แสดงการต่อวงจรเริ่มเดินมอเตอร์เรียงตามลำดับ	73
3.45	แสดงวงจรเริ่มมอเตอร์เรียงตามลำดับอัตโนมัติ	74
3.46	แสดงการต่อวงจรเริ่มมอเตอร์เรียงตามลำดับอัตโนมัติโดยใช้ PLC	75

ภ′	าพที่		หน้า
	3.47	้ แสดงแผงทดลองสัญญาณไฟจราจรแบบกระพริบ	76
	3.48	แสดงรูปแบบสัญญาณไฟจราจรแบบการปล่อยครั้งละสองแยกตรงข้ามกัน	79
	3.49	แสดงรูปแบบสัญญาณไฟจราจรแบบปล่อยทีละแยก	81
	4.1	แสดงการเขียน Timing Diagram ของวงจรสตาร์ทมอเตอร์ไฟฟ้า 3 เฟสโดยตรง	83
	4.2	การแปลง Timing Diagram ให้เป็น Ladder Diagram ของวงจรสตาร์ท	84
		มอเตอร์ไฟฟ้า 3 เฟสโดยตรง	
	4.3	แสดงการเชื่อมต่อสายสัญญาณจาก Output ของ PLC ไปยัง Input	85
		ของวงจรควบคุมมอเตอร์วงจรสตาร์ทมอเตอร์ไฟฟ้า 3 เฟสโดยตรง	
	4.4	แสดงการเขียน Timing Diagram ของวงจรกลับทางหมุนมอเตอร์ไฟฟ้าสามเฟส	87
		แบบ Direct Reversing	
	4.5	การแปลง Timing Diagram ให้เป็น Ladder Diagram ของวงจรกลับทางหมุน	88
		มอเตอร์ไฟฟ้าสามเฟล์แบบ Direct Reversing	
	4.6	แสดงการเชื่อมต่อสายสัญญาณจาก Output ของ PLC ไปยัง Input ของวงจร	90
		กลับทางหมุนมอเตอร์ไฟฟ้าสามเฟสแบบDirect Reversing	
	4.7	แสดงการเขียน Timing Diagram ของวงจรกลับทางหมุนมอเตอร์ไฟฟ้า	92
		สามเฟสแบบ Reversing After Stop	
	4.8	การแปลง Timing Diagram ให้เป็น Ladder Diagram ของวงจรกลับทางหมุน	93
		มอเตอร์ไฟฟ้าสามเฟสแบบ Reversing After	
	4.9	แสดงการเชื่อมต่อสายสัญญาณจาก Output ของ PLC ไปยัง Input ของวงจร	95
		วงจรกลับทางหมุนมอเตอร์ไฟฟ้าสามเฟสแบบ Reversing After Stop	
	4.10	แสดงการเขียน Timing Diagram ของวงจรกลับทางหมุนมอเตอร์ไฟฟ้า	97
		สามเฟสแบบ Jogging	
	4.11	การแปลง Timing Diagram ให้เป็น Ladder Diagram วงจรกลับทางหมุน	98
		มอเตอร์ไฟฟ้าสามเฟสแบบ Jogging	
	4.12	. แสดงการเชื่อมต่อสายสัญญาณจาก Output ของ PLC ไปยัง Input ของวงจร	99
		วงจรกลับทางหมุนมอเตอร์ไฟฟ้าสามเฟสแบบ Jogging	

ภาพที่		หน้า
4.13	แสดงการเขียน Timing Diagram ของวงจรสตาร์ทมอเตอร์ไฟฟ้า	101
	สามเฟสแบบ สตาร์ – เดลต้า	
4.14	การแปลง Timing Diagram ให้เป็น Ladder Diagram ของวงจรสตาร์ท	102
	มอเตอร์ไฟฟ้าสามเฟสแบบ สตาร์ – เดลต้า	
4.15	แสดงการเชื่อต่อสายสัญญาณจาก Output ของ PLC ไปยัง Input ของวงจร	104
	สตาร์ทมอเตอร์ไฟฟ้าสามเฟสแบบ สตาร์ – เดลต้า	
4.16	แสดงการเขียน Timing Dia <mark>gram ของวงจรเริ่</mark> มเดินมอเตอร์เรียงตามลำดับ	106
4.17	การแปลง Timing Diagram ให้เป็น Ladder Diagram ของวงจรเริ่ม	107
	เดินมอเตอร์เรียงตามลำดับ	
4.18	แสดงการเชื่อมต่อสายสัญญาณจาก Output ของ PLC ไปยัง Input ของวงจร	109
	เริ่มเดินมอเตอร์เ <mark>รียงต</mark> ามสำคับ	
4.19	แสดงการเขียน Timing Diagram ของวงจรเริ่มเดินมอเตอร์เรียงตามลำดับ	111
	อัตโนมัติ	
4.20	การแปลง Timing Diagram ให้เป็น Ladder Diagram ของวงจรเริ่มเดิน	112
	มอเตอร์เรียงตามลำดับอัตโนมัติ	
4.21	แสดงการเชื่อมต่อสายสัญญาณจาก Output ของ PLC ไปยัง Input ของ	113
	วงจรเริ่มเดินมอเตอร์เรียงตามถำดับอัตโนมัติเลาหการ	
4.22	แสดงการเขียน Timing Diagram ของวงจรเริ่มเดินมอเตอร์เรียงตามลำดับ	115
	โดยใช้ PLC	
4.23	การแปลง Timing Diagram ให้เป็น Ladder Diagram ของวงจรเริ่มเดิน	117
	มอเตอร์เรียงตามลำดับโดยใช้ PLC	
4.24	แสดงการเชื่อมต่อสายสัญญาณจาก Output ของ PLC ไปยัง Input ของ	120
	วงจรเริ่มเดินมอเตอร์เรียงตามลำดับโดยใช้ PLC	
4.25	แสดงการเขียน Timing Diagram ของวงจรแสดงผลสัญญาณไฟจราจร	122
	แบบกระพริบ	

ภาพที่	หน้า
4.26 การแปลง Timing Diagram ให้เป็น Ladder Diagram ของวงจรแส	ดงผล 123
สัญญาณไฟจราจรแบบกระพริบ	
4.27 แสดงการเชื่อมต่อสายสัญญาณจาก Output ของ PLC ไปยัง Input	ของ 125
วงจรควบคุมสัญญาณไฟจราจรแบบกระพริบ	
4.28 แสดงการเขียน Timing Diagram ของวงจรแสดงผลสัญญาณไฟจราจ	จร 127
แบบการปล่อยครั้งละสองแยกตรงข้ามกัน	
4.29 การแปลง Timing Diagram <mark>ให้เป็น Ladder</mark> Diagram ของวงจรแส	ดงผล 128
สัญญาณไฟจราจรแบบการปล่อยครั้งละสองแยกตรงข้ามกัน	
4.30 แสดงการเชื่อมต่อสายสัญญาณจาก Output ของ PLC ไปยัง Input	ของ 132
วงจรควบคุมสัญญาณไฟจราจรแบบการปล่อยครั้งละสองแยกตรงข้า	มกัน
4.31 แสดงการเขียน <mark>Timin</mark> g Diagram ของวงจรแสดงผล <mark>สัญญ</mark> าณไฟจราจ	จร 134
แบบปล่อยที่ละแย่ชี	
4.32 การแปลง Timing Diagram ให้เป็น Ladder Diagram ของวงจรแส	ดงผล 136
สัญญาณไฟจราจรแบบปล่อยที่ละแยก	
4.33 แสดงการเชื่อมต่อสายสัญญาณจาก Output ของ PLC ไปยัง Input	ของ 143
วงจรควบคุมสัญญาณไฟจราจรแบบปล่อยที่ละแยก	
ข.1 ขั้นตอนการติดตั้งซอฟต์แวร์ โนโลยีอุตสาทกรรม ข.2 ขั้นตอนการติดตั้งซอฟต์แวร์ โนโลยีอุตสาทกรรม	159
	159
ข.3 ขั้นตอนการติดตั้งซอฟต์แวร์	160
ข.4 ขั้นตอนการติดตั้งซอฟต์แวร์	161
ข.5 รายละเอียดหน้าต่างการใช้งาน	161
ข.6 พื้นที่สำหรับเขียนโปรแกรม	163
ข.7 การใช้งานโปรแกรม	163
ข.8 การใช้งานโปรแกรม	163
ข.9 การใช้งานโปรแกรม	164
ข.10 การใช้งานโปรแกรม	164

ภาพที่		หน้า
ข.11	การใช้งานโปรแกรม	165
ข.12	การใช้งานโปรแกรม	165
ข.13	สายโหลดข้อมูล	166
ข.14	ขั้นตอนการใช้งาน	167
ข.15	ขั้นตอนการใช้งาน	167
ข.16	ขั้นตอนการใช้งาน	168
ข.17	ขั้นตอนการใช้งาน	168
ข.18	ขั้นตอนการใช้งาน รักษายายายายายายายายายายายายายายายายายายาย	168
ข.19	ขั้นตอนการใช้งาน	169
ข.20	ขั้นตอนการใช้งาน	169
ข.21	ขั้นตอนการใช้งาน	170
ข.22	ขั้นตอนการใช้งาน	170
ข.23	ขั้นตอนการใช้งาน	171
ข.24	การทำงานของโปรแกรม RAJABHAT บาท	171
ข.25	ขั้นตอนการใช้งาน	172
ข.26	ขั้นตอนการใช้งาน	172
ข.27	ขนตอนการเชงาน ขั้นตอนการใช้งาน <i>เทคโน</i> โลยีอุตสาหกรรม การเขียบแลดเดอร์โดอะแกรมที่ผิด	173
ข.28	การเขียนแลดเดอร์ไดอะแกรมที่ผิด	180
ข.29	การเขียนแลดเดอร์ไดอะแกรมที่ถูกต้อง	180
ข.30	ภาพแลดเดอร์ไดอะแกรม (Ladder Diagram) A	181
ข.31	ภาพแลดเดอร์ไดอะแกรม (Ladder Diagram) B	181
ข.32	แลดเดอร์ไดอะแกรม (Ladder Diagram) ที่ผิด	184
ข.33	แลดเดอร์ไดอะแกรม (Ladder Diagram) ที่ถูก	184
ข.34	แลดเดอร์ไดอะแกรม (Ladder Diagram) ที่ผิด	184
ข.35	แลดเดอร์ไดอะแกรม (Ladder Diagram) ที่ถูก	185
ข.36	การเขียนเอาท์พุตคอยล์	185

ภาพที่		หน้า
ข.37	การใช้คำสั่ง TR (แลดเดอร์ไดอะแกระที่ใช้งานได้)	187
ข.38	การใช้คำสั่ง TR (แลดเดอร์ไดอะแกระที่ใช้งานไม่ได้)	187
ข.39	การเขียนแลดเดอร์ไดอะแกรมด้วย TR	188
ข.40	การใช้คำสั่ง Counter	196
ข.41	ตัวอย่างการใช้งาน	200
ข.42	Timer diagram ลักษณะการทำงานของ CNTR	202
ข.43	ตัวอย่างคำสั่ง MOV	206
ข.44	การเลื่อนข้อมูลที่สะบิต <i>เ</i> รุ ILLIECH	207
ข.45	วงจรควบคุมสตาร์ทมอเตอร์ไฟฟ้า 3 เฟส โดยตรง	209
ข.46	การเขียน Timer diagram	210
ข.47	การเขียนแลดเด <mark>อร์ได</mark> อะแกรม	212
ข.48	การเชื่อมต่อ <mark>ระหว่าง PLC ไปยังส่วนแสดงผล</mark>	212
	คณะเทคโนโลยีอุตสาหกรรม	