Thai Journal of Mathematics Volume 13 (2015) Number 1 : 137–145

http://thaijmath.in.cmu.ac.th ISSN 1686-0209

On (m, n)-Regularity of Γ -Semigroups

Wichayaporn Jantanan † and Thawhat Changphas †,‡,1

[†]Department of Mathematics, Faculty of Science Khon Kaen University, Khon Kaen 40002, Thailand [‡]Centre of Excellence in Mathematics CHE, Si Ayuttaya Rd., Bangkok 10400, Thailand e-mail: jantanan-2903@hotmail.com (W. Jantanan) thacha@kku.ac.th (T. Changphas)

Abstract: In this paper, we introduce the notions of (m, n)-regularity and (m, n)- Γ -ideal in Γ -semigroups. Some characterizations of (m, n)-regular Γ -semigroups based on (m, n)- Γ -ideals will be given. Similar results on semigroups have been done by Dragica N. Krgović in [1].

Keywords : Semigroup; Γ-semigroup; Regular Γ-semigroup; Γ-ideal; Bi-ideal; (m, n)-regular; (m, n)-ideal; (m, n)-Γ-ideal **2010 Mathematics Subject Classification** : 06F05.

1 Introduction

Let S be a semigroup and m, n non-negative integers. A subsemigroup A of S is called an (m, n)-*ideal* [2] of S if

$$A^m S A^n \subseteq A$$

 $(A^0 \text{ is defined as } A^0S = S \text{ and } SA^0 = S)$. If m = 1 and n = 1, then A is called a *bi-ideal* ([3], p.11) of S.

A semigroup S is called an (m, n)-regular semigroup [1] if for any $a \in S$ there exists $x \in S$ such that

¹Corresponding author.

Copyright $\odot\,$ 2015 by the Mathematical Association of Thailand. All rights reserved.

 $^{^{0}\}mathrm{This}$ research is supported by the Centre of Excellence in Mathematics, the Commission on Higher Education, Thailand.

$$a = a^m x a^n$$

 $(a^0 \text{ is defined as } a^0x = x \text{ and } xa^0 = x)$. For m = 1 and n = 1, S is said to be a regular semigroup ([4], p.10).

Ideal-characterizations of regular semigroups have been studied (see [5], [2], [3]). In [1], Dragica N. Krgović characterized (m, n)-regular semigroups based on (m, n)-ideals. In this paper, we introduce the concepts of (m, n)-regularity and (m, n)- Γ -ideal in a Γ -semigroup. We characterize (m, n)-regular Γ -semigroups using (m, n)- Γ -ideals.

2 Preliminaries

It is known that the concept of Γ -semigroup has been introduced by M. K. Sen in [6]. Thereafter, the definition defined by Sen was changed by M. K. Sen and N. K. Saha [7] as follows: let S and Γ be two non-empty sets. Then S is called a Γ -semigroup if

- (1) $x\alpha y \in S$ and
- (2) $(x\alpha y)\beta z = x\alpha(y\beta z)$

for all $x, y, z \in S$ and all $\alpha, \beta \in \Gamma$.

In [8], N. Kehayopulu defined Γ -semigroups by adding the uniqueness condition to the definition defined above as follows:

Definition 2.1. Let S and Γ be two non-empty sets. Then S is called a Γ -semigroup if

- (1) $x\alpha y \in S$ for all $x, y \in S$ and all $\alpha \in \Gamma$.
- (2) If $x, y, z, w \in S$ and $\alpha, \beta \in \Gamma$ such that x = z, y = w and $\alpha = \beta$, then $x\alpha y = z\beta w$.
- (3) $(x\alpha y)\beta z = x\alpha(y\beta z)$ for all $x, y, z \in S$ and all $\alpha, \beta \in \Gamma$.

In this paper, we follow Definition 2.1. Let S be a Γ -semigroup. For nonempty subsets A, B of S, we let

$$A\Gamma B = \{a\alpha b : a \in A, b \in B, \alpha \in \Gamma\}.$$

If $x \in S$, let $A\Gamma x = A\Gamma\{x\}$ and $x\Gamma A = \{x\}\Gamma A$.

Let S be a Γ -semigroup and $A \subseteq S$. If n is a positive integer, we let

$$A^n = A\Gamma A\Gamma \cdots \Gamma A$$
 (*n*-times) and $x^n = \{x\}^n$.

A non-empty subset A of a Γ -semigroup S is called a *sub-* Γ -*semigroup* of S if $x \alpha y \in A$ for all $x, y \in A$ and all $\alpha \in \Gamma$.

We define (m, n)- Γ -ideals and (m, n)-regularity of a Γ -semigroup as follows.

Definition 2.2. Let S be a Γ -semigroup and m, n non-negative integers. A sub- Γ -semigroup A of S is called an (m, n)- Γ -ideal of S if

$$A^m \Gamma S \Gamma A^n \subseteq A.$$

Here, A^0 is defined as $A^0\Gamma S = S$ and $S\Gamma A^0 = S$.

For each an element a of a Γ -semigroup S, it is easy to see that $a^m \Gamma S$ and $S\Gamma a^n$ are (m, 0)- Γ -ideal and (0, n)- Γ -ideal of S, respectively.

Definition 2.3. Let S be a Γ -semigroup and m, n non-negative integers. Then S is said to be (m, n)-regular if for any $a \in S$ there exists $x \in S$ such that

$$a \in a^m \Gamma x \Gamma a^n$$
.

Here, a^0 is defined as $a^0\Gamma x = \{x\}$ and $x\Gamma a^0 = \{x\}$.

Note that every Γ -semigroups is (0, 0)-regular.

3 Main Results

Let S be a Γ -semigroup and m, n non-negative integers. It is easy to see that the intersection of all (m, n)- Γ -ideals of S containing an element a of S, denoted by $[a]_{m,n}$, is an (m, n)- Γ -ideal of S containing a.

Theorem 3.1. Let S be a Γ -semigroup and let $a \in S$.

- (i) $[a]_{m,n} = \bigcup_{i=1}^{m+n} \{a^i\} \cup a^m \Gamma S \Gamma a^n$ for any positive integers m, n.
- (ii) $[a]_{m,0} = \bigcup_{i=1}^{m} \{a^i\} \cup a^m \Gamma S$ for any positive integers m.
- (iii) $[a]_{0,n} = \bigcup_{i=1}^{n} \{a^i\} \cup S\Gamma a^n$ for any positive integers n.

Proof. (i) We have $\bigcup_{i=1}^{m+n} \{a^i\} \cup a^m \Gamma S \Gamma a^n \neq \emptyset$. Let $x, y \in \bigcup_{i=1}^{m+n} \{a^i\} \cup a^m \Gamma S \Gamma a^n$. If $x, y \in a^m \Gamma S \Gamma a^n$ or $x \in \bigcup_{i=1}^{m+n} \{a^i\}, y \in a^m \Gamma S \Gamma a^n$ or $x \in a^m \Gamma S \Gamma a^n, y \in \bigcup_{i=1}^{m+n} \{a^i\}$, then $x \Gamma y \subseteq a^m \Gamma S \Gamma a^n$, and thus $x \Gamma y \subseteq \bigcup_{i=1}^{m+n} \{a^i\} \cup a^m \Gamma S \Gamma a^n$. Suppose that $x, y \in \bigcup_{i=1}^{m+n} \{a^i\}$. Then $x = a^p, y = a^q$ for some $1 \leq p, q \leq m+n$. There are two cases to consider. If $1 \leq p + q \leq m+n$, then $x \Gamma y \subseteq \bigcup_{i=1}^{m+n} a^i$. If m+n < p+q, then $x \Gamma y \subseteq a^m \Gamma S \Gamma a^n$. Therefore, $x \Gamma y \subseteq \bigcup_{i=1}^{m+n} \{a^i\} \cup a^m \Gamma S \Gamma a^n$. This shows that $\bigcup_{i=1}^{m+n} \{a^i\} \cup a^m \Gamma S \Gamma a^n$ is a sub- Γ -semigroup of S. We have

$$\begin{pmatrix} \prod_{i=1}^{m+n} \{a^i\} \cup a^m \Gamma S \Gamma a^n \end{pmatrix}^m \Gamma S$$

$$= \left(\bigcup_{i=1}^{m+n} \{a^i\} \cup a^m \Gamma S \Gamma a^n \right)^{m-1} \Gamma \left(\bigcup_{i=1}^{m+n} \{a^i\} \cup a^m \Gamma S \Gamma a^n \right) \Gamma S$$

$$= \left(\bigcup_{i=1}^{m+n} \{a^i\} \cup a^m \Gamma S \Gamma a^n \right)^{m-1} \Gamma \left(\bigcup_{i=1}^{m+n} \{a^i\} \Gamma S \cup a^m \Gamma S \Gamma a^n \Gamma S \right)$$

$$= \left(\bigcup_{i=1}^{m+n} \{a^i\} \cup a^m \Gamma S \Gamma a^n \right)^{m-2} \Gamma \left(\bigcup_{i=1}^{m+n} \{a^i\} \cup a^m \Gamma S \Gamma a^n \right) \Gamma (a \Gamma S)$$

$$= \left(\bigcup_{i=1}^{m+n} \{a^i\} \cup a^m \Gamma S \Gamma a^n \right)^{m-2} \Gamma \left(\bigcup_{i=1}^{m+n} \{a^i\} \Gamma a \Gamma S \cup a^m \Gamma S \Gamma a^n \Gamma a \Gamma S \right)$$

$$= \left(\bigcup_{i=1}^{m+n} \{a^i\} \cup a^m \Gamma S \Gamma a^n \right)^{m-2} \Gamma \left(\bigcup_{i=1}^{m+n} \{a^i\} \Gamma a \Gamma S \cup a^m \Gamma S \Gamma a^n \Gamma a \Gamma S \right)$$

$$= \left(\bigcup_{i=1}^{m+n} \{a^i\} \cup a^m \Gamma S \Gamma a^n \right)^{m-2} \Gamma \left(a^2 \Gamma S \right)$$

$$= a^m \Gamma S.$$

Similarly, we get

$$S\Gamma\left(\bigcup_{i=1}^{m+n} \{a^i\} \cup a^m \Gamma S \Gamma a^n\right)^n = S\Gamma a^n.$$

Consequently,

$$\begin{pmatrix} \left(\bigcup_{i=1}^{m+n} \{a^i\} \cup a^m \Gamma S \Gamma a^n\right)^m \Gamma S \Gamma \left(\bigcup_{i=1}^{m+n} \{a^i\} \cup a^m \Gamma S \Gamma a^n\right)^n \\ = a^m \Gamma S \Gamma a^n \\ \subseteq \bigcup_{i=1}^{m+n} \{a^i\} \cup a^m \Gamma S \Gamma a^n.$$

Therefore, $\bigcup_{i=1}^{m+n} \{a^i\} \cup a^m \Gamma S \Gamma a^n$ is an (m, n)- Γ -ideal of S containing a, whence $[a]_{m,n} \subseteq \bigcup_{i=1}^{m+n} \{a^i\} \cup a^m \Gamma S \Gamma a^n$. For the reverse inclusion, let $x \in \bigcup_{i=1}^{m+n} \{a^i\} \cup a^m \Gamma S \Gamma a^n$. If $x \in \bigcup_{i=1}^{m+n} \{a^i\}$, then $x = a^j$ for some $1 \leq j \leq m+n$, hence $x \in [a]_{m,n}$. If $x \in a^m \Gamma S \Gamma a^n$, by

140

$$a^m \Gamma S \Gamma a^n \subseteq ([a]_{(m,n)})^m \Gamma S \Gamma ([a]_{(m,n)})^n \subseteq [a]_{(m,n)},$$

then $x \in [a]_{m,n}$. This proves that $\bigcup_{i=1}^{m+n} \{a^i\} \cup a^m \Gamma S \Gamma a^n \subseteq [a]_{m,n}$. Hence $[a]_{m,n} = \bigcup_{i=1}^{m+n} \{a^i\} \cup a^m \Gamma S \Gamma a^n$ as required. That (ii) and (iii) are true can be proved similarly.

Lemma 3.2. Let S be a Γ -semigroup and let $a \in S$. Let m, n be positive integers.

- (i) $([a]_{m,0})^m \Gamma S = a^m \Gamma S.$
- (ii) $S\Gamma([a]_{0,n})^n = S\Gamma a^n$.
- (iii) $([a]_{m,n})^m \Gamma S \Gamma ([a]_{m,n})^n = a^m \Gamma S \Gamma a^n.$

Proof. (i) Since $[a]_{(m,0)} = \bigcup_{i=1}^{m} \{a^i\} \cup a^m \Gamma S$, we have

$$\begin{split} ([a]_{(m,0)})^{m}\Gamma S &= \left(\bigcup_{i=1}^{m} \{a^{i}\} \cup a^{m}\Gamma S\right)^{m}\Gamma S \\ &= \left(\bigcup_{i=1}^{m} \{a^{i}\} \cup a^{m}\Gamma S\right)^{m-1}\Gamma\left(\bigcup_{i=1}^{m} \{a^{i}\} \cup a^{m}\Gamma S\right)\Gamma S \\ &= \left(\bigcup_{i=1}^{m} \{a^{i}\} \cup a^{m}\Gamma S\right)^{m-1}\Gamma\left(\bigcup_{i=1}^{m} \{a^{i}\} \Gamma S \cup a^{m}\Gamma S\Gamma S\right) \\ &= \left(\bigcup_{i=1}^{m} \{a^{i}\} \cup a^{m}\Gamma S\right)^{m-2}\Gamma\left(\bigcup_{i=1}^{m} \{a^{i}\} \cup a^{m}\Gamma S\right)\Gamma(a\Gamma S) \\ &= \left(\bigcup_{i=1}^{m} \{a^{i}\} \cup a^{m}\Gamma S\right)^{m-2}\Gamma\left(\bigcup_{i=1}^{m} \{a^{i}\} \Gamma a\Gamma S \cup a^{m}\Gamma S\Gamma a\Gamma S\right) \\ &= \left(\bigcup_{i=1}^{m} \{a^{i}\} \cup a^{m}\Gamma S\right)^{m-2}\Gamma\left(\bigcup_{i=1}^{m} \{a^{i}\} \Gamma a\Gamma S \cup a^{m}\Gamma S\Gamma a\Gamma S\right) \\ &= \left(\bigcup_{i=1}^{m} \{a^{i}\} \cup a^{m}\Gamma S\right)^{m-2}\Gamma(a^{2}\Gamma S) \\ &= a^{m}\Gamma S. \end{split}$$

Therefore $([a]_{(m,0)})^m \Gamma S = a^m \Gamma S$. (ii)This can be proved similarly as (i). (iii) Since $[a]_{(m,n)} = \bigcup_{i=1}^{m+n} \{a^i\} \cup a^m \Gamma S \Gamma a^n$, we obtain

$$\begin{split} ([a]_{(m,n)})^m \Gamma S &= \left(\bigcup_{i=1}^{m+n} \{a^i\} \cup a^m \Gamma S \Gamma a^n \right)^m \Gamma S \\ &= \left(\bigcup_{i=1}^{m+n} \{a^i\} \cup a^m \Gamma S \Gamma a^n \right)^{m-1} \Gamma \left(\bigcup_{i=1}^{m+n} \{a^i\} \cup a^m \Gamma S \Gamma a^n \right) \Gamma S \\ &= \left(\bigcup_{i=1}^{m+n} \{a^i\} \cup a^m \Gamma S \Gamma a^n \right)^{m-1} \Gamma \left(\bigcup_{i=1}^{m+n} \{a^i\} \Gamma S \cup a^m \Gamma S \Gamma a^n \Gamma S \right) \\ &= \left(\bigcup_{i=1}^{m+n} \{a^i\} \cup a^m \Gamma S \Gamma a^n \right)^{m-2} \Gamma \left(\bigcup_{i=1}^{m+n} \{a^i\} \cup a^m \Gamma S \Gamma a^n \right) \Gamma (a \Gamma S) \\ &= \left(\bigcup_{i=1}^{m+n} \{a^i\} \cup a^m \Gamma S \Gamma a^n \right)^{m-2} \Gamma \left(\bigcup_{i=1}^{m+n} \{a^i\} \Gamma a \Gamma S \cup a^m \Gamma S \Gamma a^n \Gamma a \Gamma S \right) \\ &= \left(\bigcup_{i=1}^{m+n} \{a^i\} \cup a^m \Gamma S \Gamma a^n \right)^{m-2} \Gamma \left(\bigcup_{i=1}^{m+n} \{a^i\} \Gamma a \Gamma S \cup a^m \Gamma S \Gamma a^n \Gamma a \Gamma S \right) \\ &= \left(\bigcup_{i=1}^{m+n} \{a^i\} \cup a^m \Gamma S \Gamma a^n \right)^{m-2} \Gamma \left(\bigcup_{i=1}^{m+n} \{a^i\} \Gamma a \Gamma S \cup a^m \Gamma S \Gamma a^n \Gamma a \Gamma S \right) \\ &= \left(\bigcup_{i=1}^{m+n} \{a^i\} \cup a^m \Gamma S \Gamma a^n \right)^{m-2} \Gamma (a^2 \Gamma S) \\ &\vdots \\ &= a^m \Gamma S. \end{split}$$

Similarly, we get

$$S\Gamma([a]_{(m,n)})^{n} = S\Gamma\left(\bigcup_{i=1}^{m+n} \{a^{i}\} \cup a^{m}\Gamma S\Gamma a^{n}\right)^{n}$$

$$= S\Gamma\left(\bigcup_{i=1}^{m+n} \{a^{i}\} \cup a^{m}\Gamma S\Gamma a^{n}\right)\Gamma\left(\bigcup_{i=1}^{m+n} \{a^{i}\} \cup a^{m}\Gamma S\Gamma a^{n}\right)^{n-1}$$

$$= \left(\bigcup_{i=1}^{m+n} S\Gamma a^{i} \cup S\Gamma a^{m}\Gamma S\Gamma a^{n}\right)\Gamma\left(\bigcup_{i=1}^{m+n} \{a^{i}\} \cup a^{m}\Gamma S\Gamma a^{n}\right)^{n-1}$$

$$= \left(S\Gamma a\right)\Gamma\left(\bigcup_{i=1}^{m+n} \{a^{i}\} \cup a^{m}\Gamma S\Gamma a^{n}\right)\Gamma\left(\bigcup_{i=1}^{m+n} \{a^{i}\} \cup a^{m}\Gamma S\Gamma a^{n}\right)^{n-2}$$

$$= \left(\bigcup_{i=1}^{m+n} S\Gamma a\Gamma a^{i} \cup S\Gamma a\Gamma a^{m}\Gamma S\Gamma a^{n}\right)\Gamma\left(\bigcup_{i=1}^{m+n} \{a^{i}\} \cup a^{m}\Gamma S\Gamma a^{n}\right)^{n-2}$$

$$= (S\Gamma a^2)\Gamma \left(\bigcup_{i=1}^{m+n} \{a^i\} \cup a^m \Gamma S\Gamma a^n\right)^{n-2}$$

$$\vdots$$

$$= S\Gamma a^n.$$

Therefore

$$([a]_{(m,n)})^m \Gamma S) \Gamma([a]_{(m,n)})^n = (a^m \Gamma S) \Gamma([a]_{(m,n)})^n$$

= $a^m \Gamma(S \Gamma([a]_{(m,n)})^n)$
= $a^m \Gamma S \Gamma a^n.$

This completes the proof.

The following results: Theorem 3.3-3.5, are comparable with [1] Theorem 1-3 and proofs are modifications.

Theorem 3.3. Let S be a Γ -semigroup and m, n positive integers. The set of all (m, 0)- Γ -ideals and the set of all (0, n)- Γ -ideals of S will be denoted by $R_{(m,0)}$ and $L_{(0,n)}$, respectively.

- (i) S is (m, 0)-regular if and only if $R = R^m \Gamma S$ for all $R \in R_{(m,0)}$.
- (ii) S is (0,n)-regular if and only if $L = S\Gamma L^n$ for all $L \in L_{(0,n)}$.

Proof. (i) Assume that S is (m, 0)-regular. That is, $a \in a^m \Gamma S$ for all $a \in S$. Let R be an (m, 0)- Γ -ideal of S. Then $R^m \Gamma S \subseteq R$. If $a \in R$, then by assumption, $a \in a^m \Gamma S$. Hence $R \subseteq R^m \Gamma S$.

Conversely, assume that $R = R^m \Gamma S$ for all $R \in R_{(m,0)}$. To show that S is (m, n)-regular, let $a \in S$. Take an (m, 0)- Γ -ideal $R = [a]_{(m,0)}$ of S. Then

$$[a]_{(m,0)} = ([a]_{(m,0)})^m \Gamma S.$$

According to Lemma 3.2, we obtain

$$[a]_{(m,0)} = a^m \Gamma S.$$

Since $a \in [a]_{(m,0)}$, so $a \in a^m \Gamma S$. Hence S is (m, 0)-regular.

(ii) This can be proved analogously.

Theorem 3.4. Let S be a Γ -semigroup and m, n non-negative integers. The set of all (m, n)-ideals in S is denoted by $A_{(m,n)}$. Then

$$S \text{ is } (m,n)\text{-regular} \Leftrightarrow \forall A \in A_{(m,n)}(A^m \Gamma S \Gamma A^n = A).$$

$$(3.1)$$

Proof. There are 4 cases to consider.

Case 1: m = 0, n = 0. Since S is the only (0, 0)- Γ -ideal of S, it follows that $A \in A_{(0,0)}$ implies A = S. Thus (3.1) holds.

Case 2: $m = 0, n \neq 0$. We have to show that

$$S$$
 is $(0, n)$ -regular $\Leftrightarrow \forall A \in A_{(0,n)}(S\Gamma A^n = A).$

This is true using Theorem 3.3.

Case 3: $m \neq 0$, n = 0. This can be proved similarly as Case 2.

Case 4: $m \neq 0, n \neq 0$. Let S be an (m, n)-regular. Then $a \in a^m \Gamma S \Gamma a^n$ for all $a \in S$. Let $A \in A_{(m,n)}$. Then $A^m \Gamma S \Gamma A^n \subseteq A$. If $a \in A$, then by assumption, $a \in a^m \Gamma S \Gamma a^n$. Thus $A \subseteq A^m \Gamma S \Gamma A^n$.

Conversely, assume that $A^m \Gamma S \Gamma A^n = A$ for all $A \in A_{(m,n)}$. If $a \in S$, then by Lemma 3.2,

$$[a]_{(m,n)} = ([a]_{(m,n)})^m \Gamma S \Gamma ([a]_{(m,n)})^n = a^m \Gamma S \Gamma a^n.$$

Since $a \in [a]_{(m,n)}$, $a \in a^m \Gamma S \Gamma a^n$, and thus a is (m, n)-regular. Therefore, S is (m, n)-regular.

Theorem 3.5. Let S be a Γ -semigroup and m, n non-negative integers. The set of all (m, 0)- Γ -ideals and the set of all (0, n)- Γ -ideals of S will be denoted by $R_{(m,0)}$ and $L_{(0,n)}$, respectively. Then

 $S \text{ is } (m,n)\text{-regular} \Leftrightarrow \forall R \in R_{(m,0)} \ \forall L \in L_{(0,n)} \ (R \cap L = R^m \Gamma L \cap R \Gamma L^n)$ (3.2)

(Here $R^0\Gamma L = L$ and $R\Gamma L^0 = R$).

Proof. There are 4 cases to consider.

Case 1: m = 0, n = 0. Since S is (0, 0)-regular, we have (3.2) holds.

Case 2: $m = 0, n \neq 0$. Since R = S, the equation $R \cap L = R^m \Gamma L \cap R \Gamma L^n$ be comes $L = L \cap S \Gamma L^n$. Thus $L \subseteq S \Gamma L^n$, and hence $L = S \Gamma L^n$. Then (3.2) becomes

S is (0, n)-regular if and only if $\forall L \in L_{(0,n)}(L = S\Gamma L^n)$.

This follows by Theorem 3.3.

Case 3: $m \neq 0, n = 0$. This can be proved as Case 2.

Case 4: $m \neq 0, n \neq 0$. We assume first that S is (m, n)-regular. Let $R \in R_{(m,0)}$ and $L \in L_{(0,n)}$. We have

$$R^m \Gamma L \subseteq R^m \Gamma S \subseteq R$$
 and $R \Gamma L^n \subseteq S \Gamma L^n \subseteq L$.

Then $R^m \Gamma L \cap R \Gamma L^n \subseteq R \cap L$. For the reverse inclusion, let $a \in R \cap L$. By assumption,

$$a \in (a^m \Gamma S) \Gamma a^n \subseteq R \Gamma L^n$$
 and $a \in a^m \Gamma (S \Gamma a^n) \subseteq R^m \Gamma L$.

Hence $R \cap L \subseteq R^m \Gamma L \cap R \Gamma L^n$.

Conversely, suppose that the expression on the right hand side of (3.2) holds. Then

$$\forall R \in R_{(m,0)} \ \forall L \in L_{(0,n)} \ (R \cap L \subseteq R \Gamma L).$$

Take $R = [a]_{(m,0)}$ and L = S, by Lemma 3.2, we obtain

$$[a]_{(m,0)} \subseteq ([a]_{(m,0)})^m \Gamma S \subseteq a^m \Gamma S.$$

Thus $[a]_{(m,0)} \subseteq a^m \Gamma S$. Similarly, we get $[a]_{(0,n)} \subseteq S \Gamma a^n$. Hence

 $[a]_{(m,0)} \cap [a]_{(0,n)} \subseteq a^m \Gamma S \cap S \Gamma a^n.$

Since $a^m \Gamma S$ is an $(m,0)\text{-}\Gamma\text{-}\mathrm{ideal}$ and $S\Gamma a^n$ is an $(0,n)\text{-}\Gamma\text{-}\mathrm{ideal},$ by assumption, we have

 $a^m \Gamma S \cap S \Gamma a^n \subseteq a^m \Gamma S \Gamma S \Gamma a^n \subseteq a^m \Gamma S \Gamma a^n.$

Hence

$$[a]_{(m,0)} \cap [a]_{(0,n)} \subseteq a^m \Gamma S \Gamma a^n.$$

Since $a \in [a]_{(m,0)} \cap [a]_{(0,n)}$, S is (m, n)-regular.

References

- Dragica N. Krgović, On (m, n)-regular semigroups, Publications De L'institut Mathématique. 18 (32) (1975) 107–110.
- [2] S. Lajos, Generalized ideals in semigroups, Acta. Sci. Math. 22 (1961) 217– 222.
- [3] O. Steinfeld, Quasi-Ideals in Rings and Semigroups, Akadémiai Kiadó. Budapest, (1978).
- [4] M. Petrich, Introduction to Semigroups, Merrill. Columbus, (1973).
- [5] K. Iséki, A characterization of regular semigroups, Proc. Japan Acad. 32 (1956) 676–677.
- [6] M. K. Sen, On Γ-semigroup, Algebra and Its Applications (New Delhi, 1981), Lecture Notes in Pure and Applied Mathematics 91, Decker, New York. (1984) 301–308.
- [7] M. K. Sen, N. K. Saha, On Γ-semigroup I, Bull. Calcutta Math. Soc. 78 (1986) 180–186.
- [8] N. Khayopulu, On regular duo po-Γ-semigroups, Math. Slovaca. 61 (2011) 871–884.

(Received 19 October 2012) (Accepted 11 December 2014)

THAI J. MATH. Online @ http://thaijmath.in.cmu.ac.th