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Abstract
In this paper, we studied and found the new matrices of 3x 3, which it have similar
properties to Fibonacei () — matrix. Moreover, we studied and found the matrix formula
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when F ‘and L _.are Fibonacciand Lucas sequences; respectively.
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1. Introduction
The Fibonacci sequences is the sequence of interger F defined by the.initial values

F, =1, F =1 and the'recurrence relation (Koshy, 2001).
b =F_+F,
forall n>3.

The frist few values of F are 1,1,2,3,5,8,13,21,34,55,89,144,...

The Lucas sequences is the sequence of interger L defined by the initial values

L, =2, L =1 and the recurrence relation (Koshy, 2001).
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L=L +L,
forall n > 3.

The frist few valuesof L are 2,1,3,4,7.11,18,29,47,76,123,199, ..

The Fibonacci () — matrixwas first used-by Brenner (Brenner, 1951), and its basic

properties were enumerated by King/(King, 1960).

In 1981, Gould showed that the Fibonacci (O — mattix is aisquare 2 x 2 matrix of

=

The following property of the nth-power of O =matrix'was proved
E1+1 Er
Et F:z-l
In"1985/ Honsberger showed that the Fibonacci () —matrix is a'square 2 x 2

EF] it
E_E 0
The following ptoperty of the nth power of ) —matrix‘was proved

Ezﬂ F:z
EY K

n n—1

the following formy

(Gould, 1981).

matrix of the following form,

(Honsberger, 1985).

In this paper, we studied and found the new matrices of 3 x 3, which it have similar
properties to Fibonacci () —matrix.
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2. Main Results

In this study, we studied and found the new matrices of 3 X 3, which it have similar
properties to Fibonacci () —matrix. “Moreover, we- investigate the new property of

Fibonacci and Lucas number in relation with the Fibonacci and Lucas matrices formula.
We have the followingtheorem.

0.1 .0 8 K. (15N
Theorem 2.1 If Q=0 01 then o=l F |\F for all'integers\n > 3
01 1 0 F, F

3
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Assume that it.is true for all positive integer n =k, that is
0 F;H F;»fz
NETRNE—H
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Considerfor n =k +1,
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07 =00 =0 010" F, £
Ut/ F,
P A 5 K
=0 k,
|0 Fo+Fn T +F
_O chz chl O Ek+1)73 sz+1)*2
= O EH Ec = O Ekﬂ)—z (k+1)-1
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Therefore, the result is true for every n > 3.

Theorem 2.2 Forall n €[] wehave,

OV Y ™\ L
O 1 =001 1 “1/=1F L
2T 0 ) 1] TN Tre NS0\,

Proof. Letuse the principle of mathematical induction on. 7. For.#'=1 is true, since

1

27 10 +—offol 21/t AN{F L
O\ 1 1|=l0 0 1|1 9|=41 3|=\F, L,
o3 N T L1 3/ (24 F, L,

Assume that it.is true for all positive integer n = £ , that-is
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o110 © 1)\ Al=[F L
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Consider for-n=k +1,
q & 0 2 brs2
0% 2@ =(QQk) 1 =01 01 1
1 & 123 1 AL
0 1 0 1 4
= O 0 1 Ec+1 L/+1
_0 1 1 EH-Z Lk+2
i F;c+l Lk+1
= E\+2 Lk+2
_Ec+2 + EcH Lk+2 + Lk+1
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EcH Lk+l Ecﬂ Lk+l
= F;c+2 Lk+2 = Ek+l)+l (k+1)+1
F;{+3 Lk+3 Ek+l)+2 (k+1)+2

Therefore, the result s true for.every 77>~
Let us generalize this ebservation‘using the Fibonacci and-Lucas formula matrices.

Proposition 2.3 Forall integers m,n such'that,3 < m'< n, we have thefollowing

relations

(d) F =F/F +F F

—3 n—m+l m=27" n—m+2

10) & FF S5 NN

n—m+1 m=2""n-m+2

Proof. From the laws of exponent forthe square matrices. So, we have

it follows that

0/ 2 02
Q' NLE gt
i (A |3

From Theorem 2.1 and Theorem 2.2, it follows that :

F:'I Ln O me3 Fm72 F:l*m Lnfm
E1+1 Ln+1 = O mez mel E14m+l Ln—m+1
E1+2 Ln+2 O Enﬂ En n—m+2 n—m+2

By consider the cortesponding element. That is,

F=F.F__+FF

m=3"" n-m+1 m=2" n-m+2

L=F L +F L

m=3"""n-m+1 m=2""n-m+2

Completes the proof.
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3. Conclusion

In this paper, we studied-and found thesnew matrices of 3 x 3, which it have similar
properties to Fibonacei () —matrix: Moreover, wewinvestigate the new property of

Fibonacci and Lucas number in-relation with the Fibonacci and Lucas matrices formula.
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