Fibonacci Q - matrix and Matrices Formula for Fibonacci and Lucas Sequences

Teerapan Jodnok Sukanya Somprom

${ }^{1}$ Department of Mathematics, Faculty of Science and Technology, Surindra Rajabhat University, Thailand
E-mail: satidkku07@gmail.com
${ }^{2}$ Department of Mathematics, Faculty of Science and Technology, Surindra Rajabhat University, Thailand

E-mail: promsukan@hotmail.com

Abstract

In this paper, we studied and found the new matrices of 3×3, which it have similar properties to Fibonacci Q-matrix. Moreover, we studied and found the matrix formula

when F_{n} and L_{n} are Fibonacci and Lucas sequences, respectively.

Keywords: Fibonacci sequences, Lucas sequences, Q -matrix

1. Introduction

The Fibonacci sequences is the sequence of interger F_{n} defined by the initial values $F_{0}=1, F_{1}=1$ and the recurrence relation (Koshy, 2001).
for all $n \geq 3$.

$$
F_{n}=F_{n-1}+F_{n-2}
$$

The frist few values of F_{n} are $1,1,2,3,5,8,13,21,34,55,89,144, \ldots$

The Lucas sequences is the sequence of interger L_{n} defined by the initial values $L_{0}=2, L_{1}=1$ and the recurrence relation (Koshy, 2001).

$$
L_{n}=L_{n-1}+L_{n-2}
$$

for all $n \geq 3$.
The frist few values of L_{n} are $2,1,3,4,7,11,18,29,47,76,123,199, \ldots$
The Fibonacci Q - matrix was first used by Brenner (Brenner, 1951), and its basic properties were enumerated by King(King, 1960).

In 1981, Gould showed that the Fibonacci Q-matrix is a square 2×2 matrix of the following form,

The following property of the nth power of $Q-$ matrix was proved
(Gould, 1981)

In 1985, Honsberger showed that the Fibonaeci Q-matrix is a square 2×2 matrix of the following form,

$$
\left[\begin{array}{ll}
F_{2} & F_{1} \\
F_{1} & F_{0}
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
11 & 0
\end{array}\right]
$$

The following property of the nth power of Q-matrix was proved
(Honsberger, 1985).
In this paper, we studied and found the new matrices of 3×3, which it have similar properties to Fibonacci Q-matrix.

2. Main Results

In this study, we studied and found the new matrices of 3×3, which it have similar properties to Fibonacci Q-matrix. Moreover, we investigate the new property of Fibonacci and Lucas number in relation with the Fibonacci and Lucas matrices formula. We have the following theorem.
Theorem 2.1 If $Q=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1\end{array}\right]$ then $Q^{n}\left[\begin{array}{ccc}\theta & F_{n-3} \\ 0 & F_{n-2} \\ 0 & F_{n-1}\end{array}\right]\left(\begin{array}{c}F_{n-2} \\ F_{n-1} \\ F_{n}\end{array}\right]$ for all integers $n \geq 3$
Proof. Let use the principle of mathematical induction on n. For $n=3$ is true, since

Therefore, the result is true for every $n \geq 3$.
Theorem 2.2 For all $n \in \square$ we have,

$$
Q^{n}\left[\begin{array}{cc}
0 & 2 \\
1 & 1 \\
1 & 3
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{cc}
0 & 2 \\
1 & -1 \\
1 & 3
\end{array}\right]=\left[\begin{array}{cc}
F_{n} & L_{n} \\
F_{n+1} & L_{n+1} \\
F_{n+2} & L_{n+2}
\end{array}\right]
$$

Proof. Let use the principle of mathematical induction on n. For $n=1$ is true, since

$$
=\left[\begin{array}{cc}
F_{k+1} & L_{k+1} \\
F_{k+2} & L_{k+2} \\
F_{F+3}^{2} & L_{k+3} \\
L_{k+3}
\end{array}\right]=\left[\begin{array}{cc}
F_{k+1} & L_{k+1} \\
F_{(k+1)+1} & L_{(k+1+1} \\
F_{(k+1+2)} & L_{(k+k+2)}
\end{array}\right]
$$

Therefore, the result is true for every $n \geq 1$
Let us generalize this observation using the Fibonacci and Lucas formula matrices.
Proposition 2.3 For all integers m, n such that $3 \leq m<n$, we have the following relations

Proof. From the laws of exponent for the square matrices. So, we have

From Theorem 2.1 and Theorem 2.2, it follows that :

By consider the corresponding element. That is,

$$
\begin{aligned}
& F_{n}=F_{m-3} F_{n-m+1}+F_{m-2} F_{n-m+2} \\
& L_{n}=F_{m-3} L_{n-m+1}+F_{m-2} L_{n-m+2}
\end{aligned}
$$

Completes the proof.

3. Conclusion

In this paper, we studied and found the new matrices of 3×3, which it have similar properties to Fibonacci Q-matrix. Moreover, we investigate the new property of Fibonacci and Lucas number in relation with the Fibonacci and Lucas matrices formula.

References

Brenner, J. L. (1951). June meeting of the Pacific Northwest section. 1.Lucas'
matrix. The American Mathematieal Monthly, 58(3), 220-221.
Gould, H.W. (1981). A history of the Fibonacci Q-matrix and a higher-dimensional problem. Fibonacci Quarterly. 19(3). January 1981.
Honsberger, R. (1985). The Matrix Q. §8.4 in Mathematical Gems III. Washington. DC :
Math. Assoc. Amer. 106-107
King, C. H. (1960). Some Further Properties of the Fibonacci Numbers. Master's thesis. San Jose. CA: San Jose State.
Koshy, T. (2001). Fibonacci ana Lucus Numben in Appications. A Wiley-Interscience Publication. New York.
Seenukul, P. (2015). Matrices which have similar properties to Padovan Q-matrix and its generalized relations. SNRU Journal of Science and Technology. 7(2). December 2015. 90-94.
Sokhuma, K. (2013). Matrices Formula for Padovan and Perrin Sequences. Applied Mathematical Science (7). 7093-7096.
Sokhuma, K. (2013). Padovan 2 -matrix and the Generalized Relations. Applied Mathematical Science. (7). 2777-2780.

