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Abstract
In this paper, we studied and found the new matrices of 3 3× , which it have similar 

properties to Fibonacci Q −matrix. Moreover, we studied and found the matrix formula
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when 
nF and 

nL are Fibonacci and Lucas sequences, respectively.
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1. Introduction
The Fibonacci sequences is the sequence of interger 

nF defined by the initial values 

0 1F = ,
1 1F = and the recurrence relation (Koshy, 2001).

1 2n n nF F F− −= +

for all 3n ≥ .

The frist few values of 
nF are 1,1,2,3,5,8,13,21,34,55,89,144,...

The Lucas sequences is the sequence of interger 
nL defined by the initial values 

0 2L = ,
1 1L = and the recurrence relation (Koshy, 2001).
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1 2n n nL L L− −= +

for all 3n ≥ .

The frist few values of 
nL are 2,1,3,4,7,11,18,29,47,76,123,199,...

The Fibonacci Q −matrix was first used by Brenner (Brenner, 1951), and its basic 
properties were enumerated by King (King, 1960 ).

In 1981, Gould showed that the Fibonacci Q −matrix is a square 2 2× matrix of 
the following form,

1 0
1 0
 
 
 

The following property of the nth power of Q −matrix was proved

1
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n n

n n
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(Gould, 1981).

In 1985, Honsberger showed that the Fibonacci Q −matrix is a square 2 2×
matrix of the following form,

2 1

1 0

1 1
1 0

F F
F F
   

=   
  

The following property of the nth power of Q −matrix was proved

1

1

n n

n n

F F
F F

+

−

 
 
 

(Honsberger, 1985).

In this paper, we studied and found the new matrices of 3 3× , which it have similar 
properties to Fibonacci Q −matrix.
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2. Main Results

In this study, we studied and found the new matrices of 3 3× , which it have similar 
properties to Fibonacci Q −matrix. Moreover, we investigate the new property of 
Fibonacci and Lucas number in relation with the Fibonacci and Lucas matrices formula. 
We have the following theorem.

Theorem 2.1 If
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0 0 1
0 1 1
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for all integers 3n ≥

Proof. Let use the principle of mathematical induction on n . For 3n = is true, since
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Therefore, the result is true for every 3n ≥ .

Theorem 2.2 For all n∈ we have,
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Proof. Let use the principle of mathematical induction on n . For 1n = is true, since
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1 1 1 1
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Therefore, the result is true for every 1n ≥ .

Let us generalize this observation using the Fibonacci and Lucas formula matrices.

Proposition 2.3   For all integers ,m n such that 3 m n≤ < , we have the following 
relations

3 1 2 2( ) n m n m m n ma F F F F F− − + − − += +

3 1 2 2( ) n m n m m n mb L F L F L− − + − − += +

Proof. From the laws of exponent for the square matrices. So, we have

n m n mQ Q Q −=

 it follows that

0 2 0 2
1 1 1 1
1 3 1 3

n m n mQ Q Q −

    
    =     
        

From Theorem 2.1 and Theorem 2.2, it follows that :

3 2

1 1 2 1 1 1

2 2 1 2 2

0
0
0

n n m m n m n m

n n m m n m n m

n n m m n m n m

F L F F F L
F L F F F L
F L F F F L

− − − −

+ + − − − + − +

+ + − − + − +

     
     =     
          

By consider the corresponding element. That is,

3 1 2 2n m n m m n mF F F F F− − + − − += +

3 1 2 2n m n m m n mL F L F L− − + − − += +

Completes the proof.
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3. Conclusion

In this paper, we studied and found the new matrices of 3 3× , which it have similar 
properties to Fibonacci Q −matrix. Moreover, we investigate the new property of 
Fibonacci and Lucas number in relation with the Fibonacci and Lucas matrices formula.
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