Fibonacci Q-matrix and Matrices Formula for Fibonacci

and Lucas Sequences

Teerapan Jodnok¹ Sukanya Somprom²

¹Department of Mathematics, Faculty of Science and Technology, Surindra Rajabhat University, Thailand

E-mail: satidkku07@gmail.com

²Department of Mathematics, Faculty of Science and Technology, Surindra Rajabhat University,

Thailand

E-mail: promsukan@hotmail.com

Abstract

In this paper, we studied and found the new matrices of 3×3 , which it have similar properties to Fibonacci Q – matrix. Moreover, we studied and found the matrix formula

$$Q^{n}\begin{bmatrix} 0 & 2 \\ 1 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}^{n}\begin{bmatrix} 0 & 2 \\ 1 & 1 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} F_{n} & L_{n} \\ F_{n+1} & L_{n+1} \\ F_{n+2} & L_{n+2} \end{bmatrix}$$

when F_n and L_n are Fibonacci and Lucas sequences, respectively.

Keywords: Fibonacci sequences, Lucas sequences, Q-matrix

1. Introduction

The Fibonacci sequences is the sequence of interger F_n defined by the initial values $F_0 = 1$, $F_1 = 1$ and the recurrence relation (Koshy, 2001).

 $F_n = F_{n-1} + F_{n-2}$

for all $n \ge 3$.

The frist few values of F_n are 1,1,2,3,5,8,13,21,34,55,89,144,...

The Lucas sequences is the sequence of interger L_n defined by the initial values $L_0 = 2$, $L_1 = 1$ and the recurrence relation (Koshy, 2001).

PROCEEDINGS 4th Rajabhat University National and International Research and Academic Conference (RUNIRAC IV)

$$L_{n} = L_{n-1} + L_{n-2}$$

for all $n \ge 3$.

The frist few values of L_{h} are 2,1,3,4,7,11,18,29,47,76,123,199,...

The Fibonacci Q – matrix was first used by Brenner (Brenner, 1951), and its basic properties were enumerated by King (King, 1960).

In 1981, Gould showed that the Fibonacci Q – matrix is a square 2×2 matrix of the following form,

1

1 0

0

The following property of the *nth* power of Q – matrix was proved

(Gould, 1981).

In 1985, Honsberger showed that the Fibonacci Q – matrix is a square 2×2 matrix of the following form,

F_2	F_1	IT
F_{1}	F_0	0

The following property of the *nth* power of Q – matrix was proved

PAI

(Honsberger, 1985).

In this paper, we studied and found the new matrices of 3×3 , which it have similar properties to Fibonacci Q – matrix.

2. Main Results

In this study, we studied and found the new matrices of 3×3 , which it have similar properties to Fibonacci Q-matrix. Moreover, we investigate the new property of Fibonacci and Lucas number in relation with the Fibonacci and Lucas matrices formula. We have the following theorem.

Theorem 2.1 If
$$Q = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$
 then $Q^n = \begin{bmatrix} 0 & F_{n-3} & F_{n-2} \\ 0 & F_{n-2} & F_{n-1} \\ 0 & F_{n-1} & F_{n} \end{bmatrix}$ for all integers $n \ge 3$

Proof. Let use the principle of mathematical induction on n. For n = 3 is true, since

PROCEEDINGS 4th Rajabhat University National and International Research and Academic Conference (RUNIRAC IV)

509

$$\begin{aligned} & = \begin{bmatrix} F_{n+1} & L_{n+1} \\ F_{n+2} & L_{n+2} \\ F_{n+1} & L_{n+1} \\ F_{n+1} & L_{n+$$

Completes the proof.

510

PROCEEDINGS 4th Rajabhat University National and International Research and Academic Conference (RUNIRAC IV)

3. Conclusion

In this paper, we studied and found the new matrices of 3×3 , which it have similar properties to Fibonacci Q-matrix. Moreover, we investigate the new property of Fibonacci and Lucas number in relation with the Fibonacci and Lucas matrices formula.

References

Brenner, J. L. (1951). June meeting of the Pacific Northwest section. 1. Lucas' matrix. The American Mathematical Monthly, 58(3), 220-221. Gould, H.W. (1981). A history of the Fibonacci Q – matrix and a higher-dimensional problem. Fibonacci Quarterly. 19(3). January 1981. Honsberger, R. (1985). The Matrix Q. §8.4 in Mathematical Gems III. Washington. DC : Math. Assoc. Amer. 106-107. King, C. H. (1960). Some Further Properties of the Fibonacci Numbers. Master's thesis. San Jose. CA: San Jose State. Koshy, T. (2001). Fibonacci and Lucus Number in Appications. A Wiley-Interscience Publication. New York. Seenukul, P. (2015). Matrices which have similar properties to Padovan *Q* – matrix and its generalized relations. SNRU Journal of Science and Technology. 7(2). December 2015. 90-94. Sokhuma, K. (2013). Matrices Formula for Padovan and Perrin Sequences. Applied Mathematical Science. (7). 7093-7096. Sokhuma, K. (2013). Padovan Q-matrix and the Generalized Relations. Applied Mathematical Science. (7). 2777-2780. RAJABJ JT.