On 0 -minimal $(0,2)$-bi-ideals in ordered semigroups

Wichayaporn Jantanan and Thawhat Changphas

Abstract

In this paper, we study (0,2)-ideals, (1,2)-ideals and 0 -minimal (0,2)-ideals in ordered semigroups. The notions of $(0,2)$-bi-ideals in ordered semigroups and 0 - $(0,2)$-bisimple ordered semigroups are introduced and described. The results obtained extend the results on semigroups without order.

1. Introduction

In [5], the notion of (m, n)-ideals in semigroups was introduced by S. Lajos as a generalization of ideals in semigroups. In [4], D. N. Krgović described (0, 2)-ideals, $(1,2)$-ideals and 0 -minimal (0,2)-ideals. The author also introduced the notions of (0,2)-bi-ideals and 0 - $(0,2)$-bisimple semigroups; and showed that a semigroup S with a zero element 0 is 0 - $(0,2)$-bisimple if and only if S is left 0 -simple.

In the present paper, using the concept of (m, n)-ideals in ordered semigroups defined by J. Sanborisoot and T. Changphas in [7], we extend the results in [4], mentioned above, to ordered semigroups. We begin with investigation (0, 2)-ideals, (1,2)-ideals and 0 -minimal (0,2)-ideals in ordered semigroups. The notions of $(0,2)$-bi-ideals in ordered semigroups and $0-(0,2)$-bisimple ordered semigroups will be introduced.

The rest of this section let us recall some definitions and results used throughout the paper.
Definition 1.1. [1] A semigroup (S, \cdot) together with a partial order $\leqslant($ on $S)$ that is compatible with the semigroup operation, meaning that for $x, y, z \in S$,

$$
x \leqslant y \Rightarrow z x \leqslant z y \quad \& \quad x z \leqslant y z
$$

is called an ordered semigroup.
Let (S, \cdot, \leqslant) be an ordered semigroup. If A, B are nonempty subsets of S, we let

$$
\begin{aligned}
A B & =\{x y \in S \mid x \in A, y \in B\} \\
(A] & =\{x \in S \mid x \leqslant a \text { for some } a \in A\} .
\end{aligned}
$$

2010 Mathematics Subject Classification: 06F05
Keywords: semigroup, ordered semigroup, bi-ideal, (m, n)-ideal, (0,2)-ideal, (0,2)-bi-ideal, 0 -minimal (0,2)-ideal, 0-(0,2)-bisimple.

Let (S, \cdot, \leqslant) be an ordered semigroup and let A, B be nonempty subsets of S. The following was proved in [2]:
(1) $(A](B] \subseteq(A B]$;
(2) $A \subseteq B \Rightarrow(A] \subseteq(B]$;
(3) $\quad((A]]=(A]$.

Definition 1.2. [2] Let (S, \cdot, \leqslant) be an ordered semigroup. A nonempty subset A of S is called a left (respectively, right) ideal of S if
(i) $S A \subseteq A$ (respectively, $A S \subseteq A$);
(ii) for $x \in A$ and $y \in S, y \leqslant x$ implies $y \in A$.

If A is both a left and a right ideal of S, then A is called a (two-sided) ideal of S.
It is clear that every left, right and (two-sided) ideals of an ordered semigroup S is a subsemigroup of S.

Definition 1.3. [7] Let $(S, \cdot, \leqslant q)$ be an ordered semigroup and let m, n be nonnegative integers. A subsemigroup A of S is called an (m, n)-ideal of S if the following hold:
(i) $A^{m} S A^{n} \subseteq A$;
(ii) for $x \in A$ and $y \in S, y \leqslant q x$ implies $y \in A$.

Here, let $A^{0} S=S$ and $S A^{0}=S$.
From Definition 1.3, if $m=1, n=1$ then A is called a bi-ideal of S.
Note that if A is a nonempty subset of an ordered semigroup S, then the set $\left(A^{2} \cup A S A^{2}\right]$ is a bi-ideal of S. Indeed: we have $\left(\left(A^{2} \cup A S A^{2}\right]\right]=\left(A^{2} \cup A S A^{2}\right]$ and

$$
\begin{aligned}
& \left(A^{2} \cup A S A^{2}\right] S\left(A^{2} \cup A S A^{2}\right] \\
= & \left(A^{2} \cup A S A^{2}\right](S]\left(A^{2} \cup A S A^{2}\right] \\
\subseteq & \left(A^{2} S A^{2} \cup A^{2} S A S A^{2} \cup A S A^{2} S A^{2} \cup A S A^{2} S A S A^{2}\right] \\
\subseteq & \left(A S A^{2}\right] \\
\subseteq & \left(A^{2} \cup A S A^{2}\right] .
\end{aligned}
$$

Therefore, $\left(A^{2} \cup A S A^{2}\right]$ is a bi-ideal of S.
We define (0,2)-bi-ideals in an ordered semigroup analogue to [4] as follows:
Definition 1.4. A subsemigroup A of an ordered semigroup (S, \cdot, \leqslant) is called a (0,2)-bi-ideal of S if A is both a bi-ideal and a (0,2)-ideal of S.

2. Main Results

We give a characterization of (0,2)-ideals of an ordered semigroup in term of left ideals as follows:

Lemma 2.1. Let (S, \cdot, \leqslant) be an ordered semigroup and let $A \subseteq S$. Then A is a (0,2)-ideal of S if and only if A is a left ideal of some left ideal of S.

Proof. If A is a $(0,2)$-ideal of S, then

$$
(A \cup S A] A \subseteq\left(A^{2} \cup S A^{2}\right] \subseteq(A]=A
$$

and $((A]]=(A]$. Hence A is a left ideal of the left ideal $(A \cup S A]$ of S.
Conversely, assume that A is a left ideal of a left ideal L of S. Then

$$
S A^{2} \subseteq S L A \subseteq L A \subseteq A
$$

Let $x \in A$ and $y \in S$ be such that $y \leqslant x$. Since $x \in L$, we have $y \in L$. The assumption applies $y \in A$.

The following result give some characterizations of (1,2)-ideals of an ordered semigroup.

Theorem 2.2. Let (S, \cdot, \leqslant) be an ordered semigroup and let $A \subseteq S$. The following statements are equivalent:
(i) A is a $(1,2)$-ideal of S;
(ii) A is a left ideal of some bi-ideal of S;
(iii) A is a bi-ideal of some left ideal of S;
(iv) A is a $(0,2)$-ideal of some right ideal of S;
(v) A is a right ideal of some $(0,2)$-ideal of S.

Proof. (i) \Rightarrow (ii). If A is a $(1,2)$-ideal of S, then

$$
\left(A^{2} \cup A S A^{2}\right] A=\left(A^{2} \cup A S A^{2}\right](A] \subseteq\left(A^{3} \cup A S A^{3}\right] \subseteq\left(A^{2} \cup A S A^{2}\right] \subseteq(A]=A
$$

Clearly, if $x \in A, y \in\left(A^{2} \cup A S A^{2}\right]$ such that $y \leqslant x$ then $y \in A$. Hence A is a left ideal of the bi-ideal $\left(A^{2} \cup A S A^{2}\right.$] of S.
(ii) \Rightarrow (iii). Let A be a left ideal of a bi-ideal B of S. Note that $(A \cup S A]$ is a left ideal of S. By assumption, we have

$$
\begin{aligned}
A(A \cup S A] A \subseteq(A](A \cup S A](A] \subseteq & \left(A^{3} \cup A S A^{2}\right] \subseteq(A \cup B S B A] \subseteq(A \cup B A] \subseteq \\
& (A]=A
\end{aligned}
$$

Let $x \in A, y \in(A \cup S A]$ such that $y \leqslant q x$. Since $x \in A, x \in B$. Thus $y \in B$, so $y \in A$. Therefore, A is a bi-ideal of the left ideal $(A \cup S A]$ of S.
(iii) \Rightarrow (iv). Assume that A is a bi-ideal of a left ideal L of S. Note that $(A \cup A S]$ is a right ideal of S. We have
$(A \cup A S] A^{2} \subseteq(A \cup A S]\left(A^{2}\right] \subseteq\left(A^{3} \cup A S A^{2}\right] \subseteq(A \cup A S L A] \subseteq(A \cup A L A] \subseteq(A]=A$.
Let $x \in A, y \in(A \cup A S]$ such that $y \leqslant x$, then $x \in L$. Thus $y \in L$, so $y \in A$. Hence A is a (0,2)-ideal of the right ideal $(A \cup A S]$ of S.
(iv) $\Rightarrow(\mathrm{v})$. If A is a $(0,2)$-ideal of a right ideal R of S, then $\left(A \cup S A^{2}\right]$ is a (0, 2)-ideal of S and
$A\left(A \cup S A^{2}\right] \subseteq(A]\left(A \cup S A^{2}\right] \subseteq\left(A^{2} \cup A S A^{2}\right] \subseteq\left(A \cup R S A^{2}\right] \subseteq\left(A \cup R A^{2}\right] \subseteq(A]=A$.
Assume that $x \in A, y \in\left(A \cup S A^{2}\right]$ such that $y \leqslant x$. Then $x \in R$, so $y \in R$, thus $y \in A$. Hence (v) holds.
(v) \Rightarrow (i). If A is a right ideal of a (0,2)-ideal R of S, then

$$
A S A^{2} \subseteq A S R^{2} \subseteq A R \subseteq A
$$

Assume that $x \in A, y \in S$ such that $y \leqslant x$. Since $x \in R$, so $y \in R$, thus $y \in A$. Hence A is a $(1,2)$-ideal of S.

The following characterize (1,2)-ideals in term of left ideals and right ideals of an ordered semigroup.

Lemma 2.3. Let (S, \cdot, \leqslant) be an ordered semigroup and let A be a subsemigroup of S such that $A=(A]$. Then A is a $(1,2)$-ideal of S if and only if there exist a $(0,2)$-ideal L of S and a right ideal R of S such that $R L^{2} \subseteq A \subseteq R \cap L$.

Proof. Assume that A is a (1,2)-ideal of S. We have $\left(A \cup S A^{2}\right]$ and $(A \cup A S]$ are $(0,2)$-ideal and right ideal of S, respectively. Setting $L=\left(A \cup S A^{2}\right]$ and $R=(A \cup A S]$, we obtain

$$
R L^{2} \subseteq\left(A^{3} \cup A^{2} S A^{2} \cup A S A^{2} \cup A S A S A^{2}\right] \subseteq\left(A^{3} \cup A S A^{2}\right] \subseteq(A]=A
$$

It is clear that $A \subseteq R \cap L$.
Conversely, let R be a right ideal of S and L be a (0,2)-ideal of S such that $R L^{2} \subseteq A \subseteq R \cap L$. Then

$$
A S A^{2} \subseteq(R \cap L) S(R \cap L)(R \cap L) \subseteq R S L^{2} \subseteq R L^{2} \subseteq A
$$

Hence A is a $(1,2)$-ideal of S.
Definition 2.4. A (0,2)-bi-ideal A of an ordered semigroup (S, \cdot, \leqslant) with a zero element 0 will be said to be 0 -minimal if $A \neq\{0\}$ and $\{0\}$ is the only (0,2)-bi-ideal of S properly contained in A.

Assume that (S, \cdot, \leqslant) is an ordered semigroup with a zero element 0 . It is easy to see that every left ideal of S is a $(0,2)$-ideal of S. Hence if L is a 0 -minimal (0,2)-ideal of S and A is a left ideal of S contained in L then $A=\{0\}$ or $A=L$. What can we say about (0,2)-ideals contained in some 0-minimal left ideal of S ? The answer to the same question for a semigroup without order was given in [4].

Lemma 2.5. Let (S, \cdot, \leqslant) be an ordered semigroup with a zero element 0 . Suppose that L is a 0-minimal left ideal of S and A is a subsemigroup of L such that $A=(A]$. Then A is a $(0,2)$-ideal of S contained in L if and only if $\left(A^{2}\right]=\{0\}$ or $A=L$.

Proof. Assume that A is a $(0,2)$-ideal of S contained in L. Then $\left(S A^{2}\right] \subseteq L$. Since $\left(S A^{2}\right]$ is a left ideal of S, we have $\left(S A^{2}\right]=\{0\}$ or $\left(S A^{2}\right]=L$. If $\left(S A^{2}\right]=L$, then $L=\left(S A^{2}\right] \subseteq(A]$. Hence $A=L$. Let $\left(S A^{2}\right]=\{0\}$. Since $S\left(A^{2}\right] \subseteq\left(S A^{2}\right]=\{0\} \subseteq$ $\left(A^{2}\right]$, it follows that $\left(A^{2}\right]$ is a left ideal of S contained in L. By the minimality of $L,\left(A^{2}\right]=\{0\}$ or $\left(A^{2}\right]=L$. If $A^{2}=L$, then $A=L$. The opposite direction is clear.

Lemma 2.6. Let (S, \cdot, \leqslant) be an ordered semigroup with a zero element 0 and let L be a 0 -minimal $(0,2)$-ideal of S. Then $\left(L^{2}\right]=\{0\}$ or L is a 0 -minimal left ideal of S.

Proof. We have

$$
S\left(L^{2}\right]^{2}=S\left(L^{2}\right]\left(L^{2}\right] \subseteq\left(S L^{2}\right]\left(L^{2}\right] \subseteq(L]\left(L^{2}\right] \subseteq\left(L^{2}\right]
$$

Then $\left(L^{2}\right]$ is a $(0,2)$-ideal of S contained in L, hence $\left(L^{2}\right]=\{0\}$ or $\left(L^{2}\right]=L$. Suppose that $\left(L^{2}\right]=L$. Since $S L=S\left(L^{2}\right] \subseteq\left(S L^{2}\right] \subseteq(L]=L$, we obtain L is a left ideal of S. Let B be a left ideal of S contained in L. It follows that $S B^{2} \subseteq B^{2} \subseteq B \subseteq L$. This shows that B is a $(0,2)$ - ideal of S contained in L, so $B=\{0\}$ or $B=L$.

The following corollary follows from Lemma 2.5 and Lemma 2.6:
Corollary 2.7. Let (S, \cdot, \leqslant) be an ordered semigroup without zero. Then L is a minimal $(0,2)$-ideal of S if and only if L is a minimal left ideal of S.

Lemma 2.8. Let $(S, \cdot, \leqslant q)$ be an ordered semigroup without zero and let A be a nonempty subset of S. Then A is a minimal $(2,1)$-ideal of S if and only if A is a minimal bi-ideal of S.

Proof. Assume that A is a minimal $(2,1)$-ideal of S. Then $\left(A^{2} S A\right]$ is a $(2,1)$-ideal of S contained in A, and hence $\left(A^{2} S A\right]=A$. Since

$$
A S A=\left(A^{2} S A\right] S A \subseteq\left(A^{2} S A S A\right] \subseteq\left(A^{2} S A\right]=A
$$

it follows that A is a bi-ideal of S. Suppose that there exits a bi-ideal B of S contained in A. Then $B^{2} S B \subseteq B^{2} \subseteq B \subseteq A$, so B is a (2,1)-ideal of S contained in A. Using the minimality of A we get $B=A$.

Conversely, assume that A is a minimal bi-ideal of S. Then A is a (2,1)-ideal of S. Let D be a $(2,1)$-ideal of S contained in A. Since $\left(D^{2} S D\right] S\left(D^{2} S D\right] \subseteq$ $\left(D^{2}\left(S D S D^{2} S\right) D\right] \subseteq\left(D^{2} S D\right]$, we have $\left(D^{2} S D\right]$ is a bi-ideal of S. This implies that $\left(D^{2} S D\right]=A$. Since $A=\left(D^{2} S D\right] \subseteq(D]=D, A=D$. Therefore A is a minimal $(2,1)$-ideal of S.

Lemma 2.9. Let (S, \cdot, \leqslant) be an ordered semigroup and let $A \subseteq S$. Then A is a $(0,2)$-bi-ideal of S if and only if A is an ideal of some left ideal of S.

Proof. Assume that A is a $(0,2)$-bi-ideal of S. Then

$$
S\left(A^{2} \cup S A^{2}\right] \subseteq\left(S A^{2} \cup S^{2} A^{2}\right] \subseteq\left(S A^{2}\right] \subseteq\left(A^{2} \cup S A^{2}\right]
$$

hence $\left(A^{2} \cup S A^{2}\right.$] is a left ideal of S. Since

$$
A\left(A^{2} \cup S A^{2}\right] \subseteq\left(A^{3} \cup A S A^{2}\right] \subseteq(A]=A,\left(A^{2} \cup S A^{2}\right] A \subseteq\left(A^{3} \cup S A^{3}\right] \subseteq(A]=A
$$

we obtain A is an ideal of $\left(A^{2} \cup S A^{2}\right]$.
Conversely, if A is an ideal of a left ideal L of S then $A S A \subseteq A S L \subseteq A L \subseteq A$. Hence, by Lemma 2.1, A is a (0,2)-bi-ideal of S.

Theorem 2.10. Let (S, \cdot, \leqslant) be an ordered semigroup with a zero element 0 . If A is a 0 -minimal $(0,2)$-bi-ideal of S, then exactly one of the following cases occurs:
(i) $A=\{0\}, \quad\left(a S^{1} a\right]=\{0\}$;
(ii) $A=(\{0, a\}], a^{2}=0, \quad(a S a]=A$;
(iii) $\forall a \in A \backslash\{0\}, \quad\left(S a^{2}\right]=A$.

Proof. Assume that A is a 0 -minimal (0,2)-bi-ideal of S. Let $a \in A \backslash\{0\}$. Then $\left(S a^{2}\right] \subseteq A$. Moreover, $\left(S a^{2}\right]$ is a $(0,2)$-bi-ideal of S. Hence $\left(S a^{2}\right]=\{0\}$ or $\left(S a^{2}\right]=A$.

Suppose that $\left(S a^{2}\right]=\{0\}$. Since $a^{2} \in A$, we have either

$$
a^{2}=a \text { or } a^{2}=0 \text { or } a^{2} \in A \backslash\{0, a\} .
$$

If $a^{2}=a$, then $a=0$. This is a contradiction. Suppose that $a^{2} \in A \backslash\{0, a\}$. We have

$$
\begin{gathered}
S^{1}\left(\{0\} \cup a^{2}\right]^{2} \subseteq\left(\{0\} \cup S a^{2}\right]=(\{0\}] \cup\left(S a^{2}\right]=\{0\} \subseteq\left(\{0\} \cup a^{2}\right], \\
\left(\{0\} \cup a^{2}\right] S\left(\{0\} \cup a^{2}\right] \subseteq\left(a^{2} S a^{2}\right] \subseteq\left(S a^{2}\right]=\{0\} \subseteq\left\{0, a^{2}\right\} .
\end{gathered}
$$

Then $\left(\{0\} \cup a^{2}\right]$ is a $(0,2)$-bi-ideal of S contained in A. We observe that $\left(\{0\} \cup a^{2}\right] \neq$ $\{0\}$ and $\left(\{0\} \cup a^{2}\right] \neq A$. This is a contradiction because A is 0 -minimal $(0,2)$-biideal of S. Therefore, $a^{2}=0$, hence, by Lemma 2.9, $A=(\{0, a\}]$. Now, using $(a S a]$ is a $(0,2)$-bi-ideal of S contained in A we obtain $(a S a]=\{0\}$ or $(a S a]=A$. Therefore, $\left(S a^{2}\right]=\{0\}$ implies either $A=\{0, a\}$ and $\left(a S^{1} a\right]=\{0\}$ or $A=\{0, a\}$, $a^{2}=\{0\}$ and $(a S a]=A$. If $\left(S a^{2}\right] \neq\{0\}$, then $\left(S a^{2}\right]=A$.

Corollary 2.11. Let A be a 0-minimal (0,2)-bi-ideal of an ordered semigroup (S, \cdot, \leqslant) with a zero element 0 . If $\left(A^{2}\right] \neq\{0\}$, then $A=\left(S a^{2}\right]$ for every $a \in A \backslash\{0\}$.

Definition 2.12. An ordered semigroup (S, \cdot, \leqslant) with a zero element 0 is said to be 0 -(0,2)-bisimple if $\left(S^{2}\right] \neq\{0\}$ and $\{0\}$ is the only proper $(0,2)$-bi-ideal of S.

Corollary 2.13. Let (S, \cdot, \leqslant) be an ordered semigroup with zero 0 . Then S is $0-(0,2)$-bisimple if and only if $\left(S a^{2}\right]=S$ for every $a \in S \backslash\{0\}$.

Proof. Assume that $\left(S a^{2}\right]=S$ for all $a \in S \backslash\{0\}$. Let A be a (0,2)-bi-ideal of S such that $A \neq\{0\}$. Let $a \in A \backslash\{0\}$. Since $S=\left(S a^{2}\right] \subseteq\left(S A^{2}\right] \subseteq(A]=A$, so $S=A$. Since $S=\left(S a^{2}\right] \subseteq(S S]=\left(S^{2}\right]$ we have $\left(S^{2}\right]=S \neq\{0\}$. Therefore S is 0 -(0, 2)-bi-simple.

The converse statement follows from Corollary 2.11.
Theorem 2.14. Let (S, \cdot, \leqslant) be an ordered semigroup with zero 0 . Then S is $0-(0,2)$-bisimple if and only if S is left 0 -simple.

Proof. Assume that S is 0 - $(0,2)$-bisimple. If A is a left ideal of S, then A is a (0,2)-bi-ideal of S, and so $A=\{0\}$ or $A=S$.

Conversely, assume that S is left 0 -simple. Let $a \in S \backslash\{0\}$. Then ($S a]=S$, hence

$$
S=(S a]=((S a] a] \subseteq\left(\left(S a^{2}\right]\right]=\left(S a^{2}\right]
$$

By Corollary $2.13, S$ is 0 -(0,2)-bisimple.
Theorem 2.15. Let (S, \cdot, \leqslant) be an ordered semigroup with a zero element 0 . If A is a 0-minimal $(0,2)$-bi-ideal of S, then either $\left(A^{2}\right]=\{0\}$ or A is left 0 -simple.

Proof. Assume that $\left(A^{2}\right] \neq\{0\}$. Using Corollary 2.11, $\left(S a^{2}\right]=A$ for every $a \in$ $A \backslash\{0\}$. Since $a^{2} \in A \backslash\{0\}$ for every $a \in A \backslash\{0\}$, we have $a^{4}=\left(a^{2}\right)^{2} \in A \backslash\{0\}$ for every $a \in A \backslash\{0\}$. Let $a \in A \backslash\{0\}$. Since

$$
\begin{gathered}
\left(A a^{2}\right] S^{1}\left(A a^{2}\right] \subseteq\left(A A a^{2}\right] \subseteq\left(A a^{2}\right] \\
S\left(A a^{2}\right]^{2} \subseteq\left(S A a^{2} A a^{2}\right] \subseteq\left(S A^{2} a^{2}\right] \subseteq\left(A a^{2}\right]
\end{gathered}
$$

we obtain $\left(A a^{2}\right]$ is a $(0,2)$-bi-ideal of S contained in A. Hence $\left(A a^{2}\right]=\{0\}$ or $\left(A a^{2}\right]=A$. Since $a^{4} \in A a^{2} \subseteq\left(A a^{2}\right]$ and $a^{4} \in A \backslash\{0\}$, we get $\left(A a^{2}\right]=A$. We conclude by Corollary 2.13 that A is $0-(0,2)$-bisimple. Theorem 2.14 applies A is left 0-simple.

References

[1] G. Birkhoff, Lattice theory, New York: Amer. Math. Soc. Coll. Publ., Vol. 25, Providence, 1967.
[2] N. Kehayopulu and M. Tsingelis, On left regular ordered semigroups, Southeast Asian Bull. Math. 25 (2002), $609-615$.
[3] D. N. Krgović, On (m, n)-regular semigroups, Publ. Inst. Math. (Beograd) 18 (32) (1975), $107-110$.
[4] D. N. Krgović, On 0-minimal (0,2)-bi-ideal of semigroups, Publ. Inst. Math. (Beograd) 31(45) (1982), $103-107$.
[5] S. Lajos, Generalized ideals in semigroups, Acta Sci. Math. 22 (1961), $217-222$.
[6] S. Lajos, Theorems on (1,1)-ideals in semigroups, K. Marx Univ. Econ., Dep. Math., Budapest, (1972).
[7] J. Sanborisoot and T. Changphas, On characterizations of (m, n)-regular ordered semigroups, Far East J. Math. Sci. 65 (2012), $75-86$.

Received January 17, 2013
Department of Mathematics
Faculty of Science
Khon Kaen University
Khon Kaen, 40002, Thailand
E-mail: jantanan-2903@hotmail.com, thacha@kku.ac.th

