On 0-minimal (0, 2)-bi-ideals in ordered semigroups

Wichayaporn Jantanan and Thawhat Changphas

Abstract In this paper, we study (0, 2)-ideals, (1, 2)-ideals and 0-minimal (0, 2)-ideals in ordered semigroups. The notions of (0, 2)-bi-ideals in ordered semigroups and 0-(0, 2)-bisimple ordered semigroups are introduced and described. The results obtained extend the results on semigroups without order.

1. Introduction

In [5], the notion of (m, n)-ideals in semigroups was introduced by S. Lajos as a generalization of ideals in semigroups. In [4], D. N. Krgović described (0, 2)-ideals, (1, 2)-ideals and 0-minimal (0, 2)-ideals. The author also introduced the notions of (0, 2)-bi-ideals and 0-(0, 2)-bisimple semigroups; and showed that a semigroup S with a zero element 0 is 0-(0, 2)-bisimple if and only if S is left 0-simple.

In the present paper, using the concept of (m, n)-ideals in ordered semigroups defined by J. Sanborisoot and T. Changphas in [7], we extend the results in [4], mentioned above, to ordered semigroups. We begin with investigation (0, 2)-ideals, (1, 2)-ideals and 0-minimal (0, 2)-ideals in ordered semigroups. The notions of (0, 2)-bi-ideals in ordered semigroups and 0-(0, 2)-bisimple ordered semigroups will be introduced.

The rest of this section let us recall some definitions and results used throughout the paper.

Definition 1.1. [1] A semigroup (S, \cdot) together with a partial order \leq (on S) that is compatible with the semigroup operation, meaning that for $x, y, z \in S$,

$$x \leqslant y \Rightarrow zx \leqslant zy \& xz \leqslant yz,$$

is called an *ordered semigroup*.

Let (S, \cdot, \leqslant) be an ordered semigroup. If A, B are nonempty subsets of S, we let

$$AB = \{xy \in S \mid x \in A, y \in B\},\$$

$$(A] = \{x \in S \mid x \leqslant a \text{ for some } a \in A\}.$$

2010 Mathematics Subject Classification: 06F05

Keywords: semigroup, ordered semigroup, bi-ideal, (m, n)-ideal, (0, 2)-ideal, (0, 2)-bi-ideal, 0-minimal (0, 2)-ideal, 0-(0, 2)-bisimple.

Let (S, \cdot, \leq) be an ordered semigroup and let A, B be nonempty subsets of S. The following was proved in [2]:

- (1) $(A](B] \subseteq (AB];$
- (2) $A \subseteq B \Rightarrow (A] \subseteq (B];$
- (3) ((A]] = (A].

Definition 1.2. [2] Let (S, \cdot, \leq) be an ordered semigroup. A nonempty subset A of S is called a *left* (respectively, *right*) *ideal* of S if

- (i) $SA \subseteq A$ (respectively, $AS \subseteq A$);
- (ii) for $x \in A$ and $y \in S$, $y \leq x$ implies $y \in A$.

If A is both a left and a right ideal of S, then A is called a (two-sided) ideal of S.

It is clear that every left, right and (two-sided) ideals of an ordered semigroup S is a subsemigroup of S.

Definition 1.3. [7] Let $(S, \cdot, \leq q)$ be an ordered semigroup and let m, n be non-negative integers. A subsemigroup A of S is called an (m, n)-*ideal* of S if the following hold:

- (i) $A^m S A^n \subseteq A;$
- (ii) for $x \in A$ and $y \in S$, $y \leq qx$ implies $y \in A$.

Here, let $A^0 S = S$ and $SA^0 = S$.

From Definition 1.3, if m = 1, n = 1 then A is called a *bi-ideal* of S.

Note that if A is a nonempty subset of an ordered semigroup S, then the set $(A^2 \cup ASA^2]$ is a bi-ideal of S. Indeed: we have $((A^2 \cup ASA^2)] = (A^2 \cup ASA^2)$ and

$$\begin{split} & (A^2 \cup ASA^2]S(A^2 \cup ASA^2] \\ &= (A^2 \cup ASA^2](S](A^2 \cup ASA^2] \\ &\subseteq (A^2SA^2 \cup A^2SASA^2 \cup ASA^2SA^2 \cup ASA^2SASA^2] \\ &\subseteq (ASA^2] \\ &\subseteq (A^2 \cup ASA^2]. \end{split}$$

Therefore, $(A^2 \cup ASA^2]$ is a bi-ideal of S.

We define (0, 2)-bi-ideals in an ordered semigroup analogue to [4] as follows:

Definition 1.4. A subsemigroup A of an ordered semigroup (S, \cdot, \leq) is called a (0,2)-*bi-ideal* of S if A is both a bi-ideal and a (0,2)-ideal of S.

2. Main Results

We give a characterization of (0, 2)-ideals of an ordered semigroup in term of left ideals as follows:

Lemma 2.1. Let (S, \cdot, \leq) be an ordered semigroup and let $A \subseteq S$. Then A is a (0,2)-ideal of S if and only if A is a left ideal of some left ideal of S.

Proof. If A is a (0, 2)-ideal of S, then

 $(A \cup SA]A \subseteq (A^2 \cup SA^2] \subseteq (A] = A$

and ((A)] = (A). Hence A is a left ideal of the left ideal $(A \cup SA)$ of S.

Conversely, assume that A is a left ideal of a left ideal L of S. Then

$$SA^2 \subseteq SLA \subseteq LA \subseteq A$$
.

Let $x \in A$ and $y \in S$ be such that $y \leq x$. Since $x \in L$, we have $y \in L$. The assumption applies $y \in A$.

The following result give some characterizations of (1, 2)-ideals of an ordered semigroup.

Theorem 2.2. Let (S, \cdot, \leq) be an ordered semigroup and let $A \subseteq S$. The following statements are equivalent:

- (i) A is a (1, 2)-ideal of S;
- (ii) A is a left ideal of some bi-ideal of S;
- (iii) A is a bi-ideal of some left ideal of S;
- (iv) A is a (0, 2)-ideal of some right ideal of S;
- (v) A is a right ideal of some (0,2)-ideal of S.

Proof. (i) \Rightarrow (ii). If A is a (1,2)-ideal of S, then

$$(A^2 \cup ASA^2]A = (A^2 \cup ASA^2](A] \subseteq (A^3 \cup ASA^3] \subseteq (A^2 \cup ASA^2] \subseteq (A] = A.$$

Clearly, if $x \in A, y \in (A^2 \cup ASA^2]$ such that $y \leq x$ then $y \in A$. Hence A is a left ideal of the bi-ideal $(A^2 \cup ASA^2]$ of S.

(ii) \Rightarrow (iii). Let A be a left ideal of a bi-ideal B of S. Note that $(A \cup SA]$ is a left ideal of S. By assumption, we have

$$A(A \cup SA]A \subseteq (A](A \cup SA](A] \subseteq (A^3 \cup ASA^2] \subseteq (A \cup BSBA] \subseteq (A \cup BA] \subseteq (A \cup AA) \subseteq (A \cup AA) = A.$$

Let $x \in A, y \in (A \cup SA]$ such that $y \leq qx$. Since $x \in A, x \in B$. Thus $y \in B$, so $y \in A$. Therefore, A is a bi-ideal of the left ideal $(A \cup SA]$ of S.

(iii) \Rightarrow (iv). Assume that A is a bi-ideal of a left ideal L of S. Note that $(A \cup AS]$ is a right ideal of S. We have

 $(A \cup AS]A^2 \subseteq (A \cup AS](A^2] \subseteq (A^3 \cup ASA^2] \subseteq (A \cup ASLA] \subseteq (A \cup ALA] \subseteq (A] = A.$

Let $x \in A, y \in (A \cup AS]$ such that $y \leq x$, then $x \in L$. Thus $y \in L$, so $y \in A$. Hence A is a (0, 2)-ideal of the right ideal $(A \cup AS]$ of S.

(iv) \Rightarrow (v). If A is a (0,2)-ideal of a right ideal R of S, then $(A \cup SA^2]$ is a (0,2)-ideal of S and

$$A(A \cup SA^2] \subseteq (A](A \cup SA^2] \subseteq (A^2 \cup ASA^2] \subseteq (A \cup RSA^2] \subseteq (A \cup RA^2] \subseteq (A] = A.$$

Assume that $x \in A, y \in (A \cup SA^2]$ such that $y \leq x$. Then $x \in R$, so $y \in R$, thus $y \in A$. Hence (v) holds.

 $(v) \Rightarrow (i)$. If A is a right ideal of a (0,2)-ideal R of S, then

$$ASA^2 \subseteq ASR^2 \subseteq AR \subseteq A.$$

Assume that $x \in A, y \in S$ such that $y \leq x$. Since $x \in R$, so $y \in R$, thus $y \in A$. Hence A is a (1,2)-ideal of S.

The following characterize (1, 2)-ideals in term of left ideals and right ideals of an ordered semigroup.

Lemma 2.3. Let (S, \cdot, \leq) be an ordered semigroup and let A be a subsemigroup of S such that A = (A]. Then A is a (1, 2)-ideal of S if and only if there exist a (0, 2)-ideal L of S and a right ideal R of S such that $RL^2 \subseteq A \subseteq R \cap L$.

Proof. Assume that A is a (1, 2)-ideal of S. We have $(A \cup SA^2]$ and $(A \cup AS]$ are (0, 2)-ideal and right ideal of S, respectively. Setting $L = (A \cup SA^2]$ and $R = (A \cup AS]$, we obtain

$$RL^2 \subseteq (A^3 \cup A^2SA^2 \cup ASA^2 \cup ASASA^2] \subseteq (A^3 \cup ASA^2] \subseteq (A] = A.$$

It is clear that $A \subseteq R \cap L$.

Conversely, let R be a right ideal of S and L be a (0,2)-ideal of S such that $RL^2 \subseteq A \subseteq R \cap L$. Then

$$ASA^2 \subseteq (R \cap L)S(R \cap L)(R \cap L) \subseteq RSL^2 \subseteq RL^2 \subseteq A.$$

Hence A is a (1, 2)-ideal of S.

Definition 2.4. A (0,2)-bi-ideal A of an ordered semigroup (S,\cdot,\leq) with a zero element 0 will be said to be 0-minimal if $A \neq \{0\}$ and $\{0\}$ is the only (0,2)-bi-ideal of S properly contained in A.

Assume that (S, \cdot, \leq) is an ordered semigroup with a zero element 0. It is easy to see that every left ideal of S is a (0, 2)-ideal of S. Hence if L is a 0-minimal (0, 2)-ideal of S and A is a left ideal of S contained in L then $A = \{0\}$ or A = L. What can we say about (0, 2)-ideals contained in some 0-minimal left ideal of S? The answer to the same question for a semigroup without order was given in [4].

Lemma 2.5. Let (S, \cdot, \leq) be an ordered semigroup with a zero element 0. Suppose that L is a 0-minimal left ideal of S and A is a subsemigroup of L such that A = (A]. Then A is a (0,2)-ideal of S contained in L if and only if $(A^2] = \{0\}$ or A = L.

Proof. Assume that A is a (0, 2)-ideal of S contained in L. Then $(SA^2] \subseteq L$. Since $(SA^2]$ is a left ideal of S, we have $(SA^2] = \{0\}$ or $(SA^2] = L$. If $(SA^2] = L$, then $L = (SA^2] \subseteq (A]$. Hence A = L. Let $(SA^2] = \{0\}$. Since $S(A^2] \subseteq (SA^2] = \{0\} \subseteq (A^2]$, it follows that $(A^2]$ is a left ideal of S contained in L. By the minimality of L, $(A^2] = \{0\}$ or $(A^2] = L$. If $A^2 = L$, then A = L. The opposite direction is clear.

Lemma 2.6. Let (S, \cdot, \leq) be an ordered semigroup with a zero element 0 and let L be a 0-minimal (0,2)-ideal of S. Then $(L^2] = \{0\}$ or L is a 0-minimal left ideal of S.

Proof. We have

4

$$S(L^2)^2 = S(L^2)(L^2) \subseteq (SL^2)(L^2) \subseteq (L](L^2) \subseteq (L^2).$$

Then $(L^2]$ is a (0, 2)-ideal of S contained in L, hence $(L^2] = \{0\}$ or $(L^2] = L$. Suppose that $(L^2] = L$. Since $SL = S(L^2] \subseteq (SL^2] \subseteq (L] = L$, we obtain L is a left ideal of S. Let B be a left ideal of S contained in L. It follows that $SB^2 \subseteq B^2 \subseteq B \subseteq L$. This shows that B is a (0, 2)- ideal of S contained in L, so $B = \{0\}$ or B = L.

The following corollary follows from Lemma 2.5 and Lemma 2.6:

Corollary 2.7. Let (S, \cdot, \leq) be an ordered semigroup without zero. Then L is a minimal (0, 2)-ideal of S if and only if L is a minimal left ideal of S.

Lemma 2.8. Let $(S, \cdot, \leq q)$ be an ordered semigroup without zero and let A be a nonempty subset of S. Then A is a minimal (2, 1)-ideal of S if and only if A is a minimal bi-ideal of S.

Proof. Assume that A is a minimal (2, 1)-ideal of S. Then $(A^2SA]$ is a (2, 1)-ideal of S contained in A, and hence $(A^2SA] = A$. Since

$$ASA = (A^2SA]SA \subseteq (A^2SASA] \subseteq (A^2SA] = A,$$

it follows that A is a bi-ideal of S. Suppose that there exits a bi-ideal B of S contained in A. Then $B^2SB \subseteq B^2 \subseteq B \subseteq A$, so B is a (2,1)-ideal of S contained in A. Using the minimality of A we get B = A.

Conversely, assume that A is a minimal bi-ideal of S. Then A is a (2, 1)-ideal of S. Let D be a (2, 1)-ideal of S contained in A. Since $(D^2SD]S(D^2SD] \subseteq (D^2(SDSD^2S)D] \subseteq (D^2SD]$, we have $(D^2SD]$ is a bi-ideal of S. This implies that $(D^2SD] = A$. Since $A = (D^2SD] \subseteq (D] = D$, A = D. Therefore A is a minimal (2, 1)-ideal of S.

Lemma 2.9. Let (S, \cdot, \leq) be an ordered semigroup and let $A \subseteq S$. Then A is a (0,2)-bi-ideal of S if and only if A is an ideal of some left ideal of S.

Proof. Assume that A is a (0, 2)-bi-ideal of S. Then

$$S(A^2 \cup SA^2] \subseteq (SA^2 \cup S^2A^2] \subseteq (SA^2] \subseteq (A^2 \cup SA^2],$$

hence $(A^2 \cup SA^2)$ is a left ideal of S. Since

$$A(A^2 \cup SA^2] \subseteq (A^3 \cup ASA^2] \subseteq (A] = A, \ (A^2 \cup SA^2]A \subseteq (A^3 \cup SA^3] \subseteq (A] = A$$

we obtain A is an ideal of $(A^2 \cup SA^2]$.

Conversely, if A is an ideal of a left ideal L of S then $ASA \subseteq ASL \subseteq AL \subseteq A$. Hence, by Lemma 2.1, A is a (0,2)-bi-ideal of S.

Theorem 2.10. Let (S, \cdot, \leq) be an ordered semigroup with a zero element 0. If A is a 0-minimal (0, 2)-bi-ideal of S, then exactly one of the following cases occurs:

- (i) $A = \{0\}, (aS^1a] = \{0\};$
- (ii) $A = (\{0, a\}], a^2 = 0, (aSa] = A;$
- (iii) $\forall a \in A \setminus \{0\}, (Sa^2] = A.$

Proof. Assume that A is a 0-minimal (0, 2)-bi-ideal of S. Let $a \in A \setminus \{0\}$. Then $(Sa^2] \subseteq A$. Moreover, $(Sa^2]$ is a (0, 2)-bi-ideal of S. Hence $(Sa^2] = \{0\}$ or $(Sa^2] = A$.

Suppose that $(Sa^2] = \{0\}$. Since $a^2 \in A$, we have either

$$a^2 = a \text{ or } a^2 = 0 \text{ or } a^2 \in A \setminus \{0, a\}.$$

If $a^2 = a$, then a = 0. This is a contradiction. Suppose that $a^2 \in A \setminus \{0, a\}$. We have

$$S^{1}(\{0\} \cup a^{2}]^{2} \subseteq (\{0\} \cup Sa^{2}] = (\{0\}] \cup (Sa^{2}] = \{0\} \subseteq (\{0\} \cup a^{2}],$$
$$(\{0\} \cup a^{2}]S(\{0\} \cup a^{2}] \subseteq (a^{2}Sa^{2}] \subseteq (Sa^{2}] = \{0\} \subseteq \{0, a^{2}\}.$$

Then $(\{0\}\cup a^2]$ is a (0,2)-bi-ideal of S contained in A. We observe that $(\{0\}\cup a^2] \neq \{0\}$ and $(\{0\}\cup a^2]\neq A$. This is a contradiction because A is 0-minimal (0,2)-bi-ideal of S. Therefore, $a^2 = 0$, hence, by Lemma 2.9, $A = (\{0,a\}]$. Now, using (aSa] is a (0,2)-bi-ideal of S contained in A we obtain $(aSa] = \{0\}$ or (aSa] = A. Therefore, $(Sa^2] = \{0\}$ implies either $A = \{0,a\}$ and $(aS^1a] = \{0\}$ or $A = \{0,a\}$, $a^2 = \{0\}$ and (aSa] = A. If $(Sa^2] \neq \{0\}$, then $(Sa^2] = A$.

Corollary 2.11. Let A be a 0-minimal (0,2)-bi-ideal of an ordered semigroup (S,\cdot,\leqslant) with a zero element 0. If $(A^2) \neq \{0\}$, then $A = (Sa^2)$ for every $a \in A \setminus \{0\}$.

Definition 2.12. An ordered semigroup (S, \cdot, \leq) with a zero element 0 is said to be 0-(0, 2)-bisimple if $(S^2) \neq \{0\}$ and $\{0\}$ is the only proper (0, 2)-bi-ideal of S.

Corollary 2.13. Let (S, \cdot, \leq) be an ordered semigroup with zero 0. Then S is 0-(0,2)-bisimple if and only if $(Sa^2] = S$ for every $a \in S \setminus \{0\}$.

Proof. Assume that $(Sa^2] = S$ for all $a \in S \setminus \{0\}$. Let A be a (0, 2)-bi-ideal of S such that $A \neq \{0\}$. Let $a \in A \setminus \{0\}$. Since $S = (Sa^2] \subseteq (SA^2] \subseteq (A] = A$, so S = A. Since $S = (Sa^2] \subseteq (SS] = (S^2]$ we have $(S^2] = S \neq \{0\}$. Therefore S is 0-(0, 2)-bi-simple.

The converse statement follows from Corollary 2.11.

Theorem 2.14. Let (S, \cdot, \leq) be an ordered semigroup with zero 0. Then S is 0-(0, 2)-bisimple if and only if S is left 0-simple.

Proof. Assume that S is 0-(0,2)-bisimple. If A is a left ideal of S, then A is a (0,2)-bi-ideal of S, and so $A = \{0\}$ or A = S.

Conversely, assume that S is left 0-simple. Let $a \in S \setminus \{0\}$. Then (Sa] = S, hence

$$S = (Sa] = ((Sa]a] \subseteq ((Sa^2]] = (Sa^2]$$

By Corollary 2.13, S is 0-(0, 2)-bisimple.

Theorem 2.15. Let (S, \cdot, \leq) be an ordered semigroup with a zero element 0. If A is a 0-minimal (0, 2)-bi-ideal of S, then either $(A^2] = \{0\}$ or A is left 0-simple.

Proof. Assume that $(A^2] \neq \{0\}$. Using Corollary 2.11, $(Sa^2] = A$ for every $a \in A \setminus \{0\}$. Since $a^2 \in A \setminus \{0\}$ for every $a \in A \setminus \{0\}$, we have $a^4 = (a^2)^2 \in A \setminus \{0\}$ for every $a \in A \setminus \{0\}$. Let $a \in A \setminus \{0\}$. Since

$$(Aa^2]S^1(Aa^2] \subseteq (AAa^2] \subseteq (Aa^2],$$
$$S(Aa^2)^2 \subseteq (SAa^2Aa^2] \subseteq (SA^2a^2] \subseteq (Aa^2],$$

we obtain $(Aa^2]$ is a (0,2)-bi-ideal of S contained in A. Hence $(Aa^2] = \{0\}$ or $(Aa^2] = A$. Since $a^4 \in Aa^2 \subseteq (Aa^2]$ and $a^4 \in A \setminus \{0\}$, we get $(Aa^2] = A$. We conclude by Corollary 2.13 that A is 0-(0, 2)-bisimple. Theorem 2.14 applies A is left 0-simple.

References

- G. Birkhoff, Lattice theory, New York: Amer. Math. Soc. Coll. Publ., Vol. 25, Providence, 1967.
- [2] N. Kehayopulu and M. Tsingelis, On left regular ordered semigroups, Southeast Asian Bull. Math. 25 (2002), 609-615.
- [3] D. N. Krgović, On (m, n)-regular semigroups, Publ. Inst. Math. (Beograd) 18 (32) (1975), 107 110.
- [4] D. N. Krgović, On 0-minimal (0,2)-bi-ideal of semigroups, Publ. Inst. Math. (Beograd) 31(45) (1982), 103-107.

- [5] S. Lajos, Generalized ideals in semigroups, Acta Sci. Math. 22 (1961), 217-222.
- [6] S. Lajos, Theorems on (1,1)-ideals in semigroups, K. Marx Univ. Econ., Dep. Math., Budapest, (1972).
- [7] J. Sanborisoot and T. Changphas, On characterizations of (m, n)-regular ordered semigroups, Far East J. Math. Sci. 65 (2012), 75 - 86.

Received January 17, 2013

Department of Mathematics Faculty of Science Khon Kaen University Khon Kaen, 40002, Thailand E-mail: jantanan-2903@hotmail.com, thacha@kku.ac.th